首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   60篇
  国内免费   62篇
电工技术   1篇
综合类   16篇
化学工业   22篇
金属工艺   294篇
机械仪表   76篇
矿业工程   8篇
能源动力   17篇
石油天然气   4篇
武器工业   5篇
无线电   8篇
一般工业技术   182篇
冶金工业   40篇
原子能技术   13篇
  2024年   1篇
  2023年   21篇
  2022年   28篇
  2021年   49篇
  2020年   25篇
  2019年   30篇
  2018年   21篇
  2017年   37篇
  2016年   36篇
  2015年   24篇
  2014年   21篇
  2013年   73篇
  2012年   30篇
  2011年   38篇
  2010年   19篇
  2009年   25篇
  2008年   22篇
  2007年   18篇
  2006年   22篇
  2005年   22篇
  2004年   15篇
  2003年   20篇
  2002年   12篇
  2001年   16篇
  2000年   10篇
  1999年   9篇
  1998年   6篇
  1997年   10篇
  1996年   10篇
  1995年   3篇
  1994年   3篇
  1993年   7篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有686条查询结果,搜索用时 62 毫秒
1.
通过不同扫描速度和扫描方式的选区激光熔化(SLM)技术制备了Inconel 718合金,研究了工艺参数对熔池的形态、凝固组织、晶粒大小和晶粒取向的影响。结果表明,随着扫描速度增加,熔池的深度与宽度的比值增大,曲率增大;而扫描速度为1 450mm/s时,采用单向扫描比十字交叉扫描时深宽比值更大。在熔池内,凝固组织由熔池底部的胞晶向熔池侧面的胞枝晶转变。晶粒以<001>方向择优生长,其晶粒间的取向差角以小角度(<15°)为主。当十字交叉扫描时,随着扫描速度增加,小角度取向差角的分布分数增加。当速度一定、采用十字交叉扫描时,小角度的取向差角占比为62.57%,而采用单向扫描时为47.69%。  相似文献   
2.
不同气氛对激光熔覆IN718涂层形貌、组织与性能的影响   总被引:2,自引:2,他引:0  
目的研究不同气氛条件下激光熔覆IN718高温合金涂层的微观偏析。方法利用激光熔覆技术,在不同送粉气和不同保护气条件下制备了IN718高温合金涂层,并对制备的涂层进行双时效热处理。采用光学显微镜观察显微组织结构和特征,采用扫描电镜和能谱仪对涂层组织和相成分进行分析,采用维氏硬度计对涂层热处理前后的硬度进行测定。结果送粉气种类对熔覆层的形貌和组织有一定影响,而保护气种类对熔覆层的形貌和组织影响不明显。与氩气作为送粉气制备的涂层相比,氦气作为送粉气制备的涂层组织更加细密,Laves相的尺寸更小且分布更均匀,Laves相的体积分数由氩气送粉的9.35%减少到氦气送粉的5.25%,并且Laves相中Nb的质量分数由20%下降到16%,涂层硬度由287HV0.2提高到306HV0.2。双时效热处理后,涂层的显微硬度明显提高,氦气作为送粉气制备的涂层硬度为468HV0.2,高于氩气作为送粉气制备的涂层硬度447HV0.2。结论氦气作为送粉气能有效降低激光熔覆IN718涂层的Nb元素偏析,同时细化涂层组织,提高涂层显微硬度。氦气作为保护气对涂层形貌和组织的影响不明显。  相似文献   
3.
During a metal cutting process, chemical wear can become the dominant mechanism of tool degradation under the high temperatures and contact pressures that arise between the tool and the metal workpiece. This study focuses on the chemical and diffusional interactions between superalloy Inconel 718 and cubic boron nitride (cBN) tool material with and without TiC binder. It covers thermodynamic modeling and experimental tests in the pressure range of 0.1 Pa to 2.5 GPa at temperatures up to 1600 °C. The methods used include diffusion couples under both vacuum and high pressure, transmission electron microscopy (TEM) analysis and in-situ synchrotron observations. It is shown that cBN is prone to diffusional dissolution in the metal and to reactions with niobium, molybdenum, and chromium from Inconel 718. Adding TiC binder changes the overall degradation process because it is less susceptible to these interaction mechanisms.  相似文献   
4.
目的探索激光增材制造Inconel718高温合金最理想的固溶处理制度。方法利用激光增材制造技术制备了Inconel 718合金,通过组织观察(光学显微镜和扫描电镜)、能谱分析和维氏硬度测试等方法,研究了固溶温度对其组织、析出相及硬度的影响。结果不同固溶温度对Inconel 718的晶粒尺寸有很大影响。在固溶温度1000℃下保温1 h,沉积层开始出现再结晶现象。当固溶温度继续增加到1080℃时,与沉积态的组织相比,晶粒明显细化且再结晶过程基本完成。此外,不同固溶温度条件下,Inconel718的相析出和溶解行为也有所差异。固溶温度为940℃时,在未溶解的Laves相周围存在明显的δ相,当固溶温度继续提高时,δ相由于固溶作用而数量减少。另外,不同固溶温度处理后的合金显微硬度也表现出规律变化。当固溶温度为940℃时,试样硬度高于沉积态硬度,但是随着固溶温度持续升高,合金的显微硬度开始迅速下降并低于沉积态硬度,1050℃时保持稳定;当温度高于1150℃时,显微硬度继续迅速下降。结论激光增材制造Inconel718合金的热处理制度不同于铸造和锻造的热处理制度,其较为理想的固溶制度为1080~1150℃保温1 h。  相似文献   
5.
High entropy alloy(HEA) of Fe Co Ni Ti Al and Inconel 718 superalloy were firstly transient liquid phase(TLP) bonded by BNi2 filler due to the diffusion of Si and B in the filler to the base metals. The effects of bonding time on microstructure evolution and mechanical properties of the TLP joints were investigated.Owing to the complete isothermal solidification of the joints bonded for 30 min 120 min at 1100°C,no athermally solidified zones(ASZs) formed by eutectic phases were observed in the welded zone. Thus the TLP joints were only composed by the isothermally solidified zone(ISZ) and two diffusion affected zone(DAZ) adjacent to the dissimilar base metals and the negative effect of the ASZ on joint properties can be avoided. In addition, the increase of the bonding time can also make the Ti B2 borides precipitated in the DAZ near HEA and the brittle borides or carbides in the DAZ near IN718 alloy decrease and reduce the possibility of the stress concentration happened in the joints under loading. Therefore, the highest shear strength(632.1 MPa) of the TLP joints was obtained at 1100°C for 120 min, which was higher than that of the joint bonded for 30 min, 404.2 MPa. Furthermore, the extension of the bonding time made the fracture mechanism of the joint be transformed from the intergranular fracture to the transgranular fracture. However, as the brittle borides in the DAZ near IN718 can not be eliminated completely and refining of grains also happened in such region, all the TLP joints fractured inner the DAZ near IN718 alloy.  相似文献   
6.
The nickel-base superalloy 718 is a precipitation hardened alloy widely used in the nuclear fuel assembly of pressurized water reactors (PWR). However, the alloy can experience failure due to hydrogen embrittlement (HE). The processing route can influence the microstructure of the material and, therefore, the HE degree. In particular, the size and distribution of the (Nb,Ti)C particles can be affected by the processing. In this regard, the objective of this work was to analyze the influence of cold and hot deformation processing routes on the development of the microstructure, and the consequences on mechanical properties and hydrogen embrittlement. Tensile samples were hydrogenated through gaseous charging and compared to non-hydrogenated samples. Characterization was performed via scanning and transmission electron microscopies, as well as electron backscattered diffraction. The processing was effective to promote significant variations in average grain size and length fraction of special Σ3n boundaries, as well as reduction of average (Nb,Ti)C particle size, being these changes more intense for the cold-rolled route. For the mechanical properties, on one side, the cold-rolled route presented the highest increase in ductility for non-hydrogenated samples, while, on the other side, had the highest degree of embrittlement under hydrogen. This dual behavior was attributed to the interaction of hydrogen with the (Nb,Ti)C particles and stringers and its ensuing influence on the fracture processes.  相似文献   
7.
对激光成形修复Inconel 625合金的工艺特性以及不同区域的组织进行了研究。结果表明:激光成形修复Inconed625合金的工艺范围较宽;激光功率主要影响单道修复层的宽度;扫描速度对单道修复层的尺寸影响较为显著,而送粉率的影响较小。基材的相组成包括γ(Ni-Cr)基体相、大尺寸(约10μm)块状MC型碳化物(M为Nb和Ti)、沿晶界析出的小尺寸(约0.5μm)块状MC型碳化物以及不规则形状的Laves相。修复区组织为呈外延生长的柱状枝晶,相组成为γ基体相、沿枝晶界析出的Laves相以及少量MC型碳化物。层与层界面处Laves相析出急剧增加形成层间过渡区。  相似文献   
8.
为较为准确可靠地预测IN718合金服役于各种复杂工况下的力学响应,开展了位移控制条件下微米尺寸IN718合金单晶锯齿状变形行为的理论建模研究工作.首先,基于微压缩测试的实验观察,建立了能够较为真实反映位移控制下晶体材料变形的"变形块-弹簧"力学分析模型.进而,通过分析晶体材料锯齿状变形行为中的应变强化、流动法则、加卸载准则以及应变突变判据等建模要素,构建了描述该行为的连续化晶体塑性本构理论模型之后,应用该模型分别研究了单滑移与双滑移取向的IN718合金单晶微柱体的轴向压缩响应,并与对应微压缩实验结果进行了比较.研究结果表明,基于上述理论模型预测的IN718单晶柱体轴向力学响应出现了加载、卸载以及应变突变3种变形方式,呈现出明显的锯齿状变形行为,与对应实验测试结果具有很好的吻合性.基于连续介质框架构建的微尺度锯齿状塑性本构模型,可为经典的连续化晶体塑性理论在亚微米尺度领域的发展提供有力理论支撑.  相似文献   
9.
Inconel 718 thin walls were fabricated via electron beam directed energy deposition (EB-EDE) to investigated their microstructure and mechanical properties in terms of the deposition modes. Results revealed that the deposition modes had great effects on the microstructural evolution and thus influenced the mechanical properties. The layered nature and the fine dendrites were produced by the intermittent deposition, while the coarse and irregular cellular crystals were formed under the continuous deposition. The harmful Laves phase was precipitated under both deposition modes. The microhardness and tensile strength of the build-ups deposited intermittently were higher because there were fewer Laves phase. This work provided a new perspective to explain the microstructure differences of multi-layered components formed by EB-DED.  相似文献   
10.
采用EBSD技术系统地研究了扫描间距h对选区激光熔化(SLM)成形Inconel 738合金微观组织、动态再结晶行为、织构演变和力学性能的影响。研究表明,随着h的增加,平行于沉积方向的细长柱状晶晶粒长/径比减小,晶粒的形貌由粗大的细长柱状晶向细小的等轴晶转变,晶粒的取向变得更加随机;随着h的增加,动态再结晶体积分数增加,再结晶区域位错密度和应变低于未再结晶区域;随着h的增加,其铸造织构的类型发生变化,织构主要由Rotated-Goss织构{110}110转变为Rotated-Goss织构{110}110+Cube织构{001}100,Cube织构的强度逐渐增强,而Rotated-Goss织构的强度逐渐减弱;此外,通过选择合适的扫描间距(h=70μm),沉积态Inconel 738合金可获得优异室温力学性能(σ_y=933 MPa,σ_(uts)=1209 MPa,ε_f=38%),达到良好的强度与塑性匹配。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号