首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8142篇
  免费   233篇
  国内免费   265篇
电工技术   225篇
综合类   376篇
化学工业   1210篇
金属工艺   665篇
机械仪表   907篇
建筑科学   826篇
矿业工程   225篇
能源动力   291篇
轻工业   502篇
水利工程   61篇
石油天然气   346篇
武器工业   52篇
无线电   432篇
一般工业技术   770篇
冶金工业   367篇
原子能技术   63篇
自动化技术   1322篇
  2024年   8篇
  2023年   63篇
  2022年   131篇
  2021年   165篇
  2020年   125篇
  2019年   102篇
  2018年   122篇
  2017年   139篇
  2016年   150篇
  2015年   194篇
  2014年   352篇
  2013年   434篇
  2012年   450篇
  2011年   582篇
  2010年   451篇
  2009年   407篇
  2008年   398篇
  2007年   464篇
  2006年   480篇
  2005年   432篇
  2004年   362篇
  2003年   419篇
  2002年   346篇
  2001年   290篇
  2000年   257篇
  1999年   250篇
  1998年   224篇
  1997年   176篇
  1996年   150篇
  1995年   135篇
  1994年   94篇
  1993年   71篇
  1992年   51篇
  1991年   27篇
  1990年   22篇
  1989年   38篇
  1988年   19篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   5篇
  1978年   1篇
  1976年   6篇
  1975年   3篇
  1971年   1篇
排序方式: 共有8640条查询结果,搜索用时 31 毫秒
1.
Herein, molybdenum disulfide nanoflakes decorated copper phthalocyanine microrods (CuPc-MoS2) are synthesized via two step simple hydrothermal method. The as synthesized hybrid along with pure molybdenum disulfide (MoS2) nanoflower and pure copper phthalocyanine (CuPc) microrods are well characterized by various techniques that confirm phase, morphology, elemental compositions etc. Next, electrocatalytic oxygen reduction reaction towards fuel cell is investigated in alkaline medium and obtained results proclaim that our CuPc-MoS2 heterostructure outperforms the other two constituent materials. Efficient oxygen reduction is achieved following four electron pathway by CuPc-MoS2 whereas partial reduction is done through two electron process by CuPc and MoS2 separately. Long-time durability test reveals almost 97.6% retention after 8000s that eventually dictate us that CuPc-MoS2 heterostructure can be the efficient cathode electrocatalyst for future generation fuel cell.  相似文献   
2.
Intermetallic materials are bestowed by diverse ordered superlattice structures together with many unusual properties. In particular, the advent of chemically complex intermetallic alloys (CCIMAs) has received considerable attention in recent years and offers a new paradigm to develop novel metallic materials for advanced structural applications. These newly emerged CCIMAs exhibit synergistic modulations of structural and chemical features, such as self-assembled long-range close-packed ordering, complex sublattice occupancy, and interfacial disordered nanoscale layer, potentially allowing for superb physical and mechanical properties that are unmatched in conventional metallic materials. In this paper, we critically review the historical developments and recent advances in ordered intermetallic materials from the simple binary to chemically complex alloy systems. We are focused on the unique multicomponent superlattice microstructures, nanoscale grain-boundary segregation, and disordering, as well as the various extraordinary mechanical and functional properties of these newly developed CCIMAs. Finally, perspectives on the future research orientation, challenges, and opportunities of this new frontier are provided.  相似文献   
3.
Oxygen evolution reaction (OER) is a key process involved in many energy-related conversion systems. An ideal OER electrocatalyst should possess rich active sites and optimal binding strength with oxygen-containing intermediates. Although numerous endeavors have been devoted to the modification and optimization of transition-metal-based OER electrocatalysts, they are still operated with sluggish kinetics. Herein, an ion-exchange approach is proposed to realize the structure engineering of amorphous P–CoS hollow nanomaterials by utilizing the ZIF-67 nanocubes as the precursors. The precise structure control of the amorphous hollow nanostructure contributes to the large exposure of surface active sites. Moreover, the introduction of phosphorus greatly modifies the electronic structure of CoS2, which is thus favorable for optimizing the binding energies of oxygenated species. Furthermore, the incorporation of phosphorus may also induce the formation of surface defects to regulate the local electronic structure and surface environment. As a result of this, such P–CoS hollow nanocatalysts display remarkable electrocatalytic activity and durability towards OER, which require an overpotential of 283 mV to afford a current density of 10 mA cm?2, outperforming commercial RuO2 catalyst.  相似文献   
4.
The gas diffusion substrate (GDS) is essential in the proton exchange membrane fuel cells. Its fabrication techniques affect the performance significantly and are worthy of investigation. In this study, a manufacturing process of the GDS is proposed to understand the formation process of GDS and promote its structure and performance more pertinently. Different states during the preparation process, raw carbon paper, pre-curing, curing, carbonation, and graphitization, are characterized and measured. Experimental and numerical methods are employed to determine the relationships between microstructure, transport, and mechanical performance variation with the fabricating processes. The results show that its porosity, average pore size, and effective diffusivity decrease first and increase after curing. These parameters after graphitization are lower than that of the carbon paper (CP). The electrical resistivity increases dramatically while pre-curing and decreases gradually after curing, carbonation, and graphitization, and it is much reduced after graphitization. Moreover, mechanical measurement results show that both the picks of tensile strength and flexural modulus occur after curing. Its tensile strength shows little change after graphitization compared to the initial paper's. In contrast, the flexural modulus is improved significantly.  相似文献   
5.
This work evaluated the synergistic effects of combined high-intensity ultrasound (HIU) with β-cyclodextrin (β-CD) treatments on inhibiting browning of apple juice and explored the mechanism through simulation system. The combined treatment of 300 W HIU with 0.006 g mL−1 β-CD had a synergistic impact on maintaining juice colour, resulting in a 39.06% reduction in browning degree, only a 36.64% decrease in total phenolic content, and a 17.82% reduction in PPO activity. The inhibition of enzymatic browning in simulated system revealed that HIU suppressed the enzyme (Polyphenol oxidase, PPO) and β-CD inhibited enzyme (PPO) and embedded substrate (polyphenol). The results of spectroscopic analysis showed that the particle-size distribution of PPO narrowed, the content of α-helix in the secondary structure increased, the fluorescence intensity increased, and the maximum wavelength was red-shifted after HIU and β-CD treatment. Changes in structure could further result in PPO activity loss. Hence, the combined treatment could synthetically alleviate the browning of apple juice.  相似文献   
6.
《Ceramics International》2022,48(9):12281-12290
Following the rapid growth of lightning technology, the development of red-emitting phosphors is effective for improving color temperature and color rendering index for w-LEDs devices. Herein, a single phased garnet phosphor with cation and polyhedron substitution modification was firstly prepared. For Mg3Gd2Ge3O12: Bi3+, Eu3+, the intensity has been remarkably improved by about 16% compared to the one without Bi3+ sensitization. The energy transfer mechanism is identified in this work. Based on cation and polyhedron substitution strategies, novel phosphors with different compositions were obtained and further modified the PL properties. With Lu3+ substitution, the bond lengths between Bi3+ ion and anion ligands are decreased and the site symmetry has been strengthened, which leads to a 21 nm blue shift when Lu3+ totally replaced Gd3+ ions. In addition, Lu3+ and [SiO4] substitution strategies both effectively increased symmetric rigid structure, which leads to a significant improvement in thermal stability, indicating the samples own great potential in optical applications This work provides a new insight to synthesis red-emitting phosphors for warm white-LEDs.  相似文献   
7.
Side-chain optimized poly (2,6-dimethyl-1,4-phenylene oxide)-g-poly (styrene sulfonic acid) (PPO-g-PSSA) is designed with balanced water-resistance and sulfonation degree. The PPO-g-PSSA is synthesized by controlled atom-transfer radical polymerization (ATRP) from brominated poly (2,6-dimethyl-1,4-phenylene oxide) (PPO-xBr) and ethyl styrene-4-sulfonate and followed by hydrolysis. A series of PPO-g-PSSA are prepared possessing different bromination degree (x) of PPO-xBr and polymerization degree (m) of the side-chains and the water-resistances of the fabricated membranes are investigated. The results show that a PPO-g-PSSA at relatively low x (x < 0.2) and high m (m > 4) exhibits good balance between the water-resistance and the sulfonation degree. Namely, it displays suitable proton conductivity with compromised water-resistance. Moreover, a maximum ion exchange capacity (IEC) of 3.24 mmol g?1 is reached without the sacrifice of water-resistance. In addition, PPO-g-0.08PSSA-13 and PPO-g-0.14PSSA-4 are chosen characterized by thermogravimetric analysis, proton conductivities and mechanical properties. At 90% RH, the optimized PPO-g-0.08PPSA-13 possesses a proton conductivity of 37.9 mS cm?1 at 40 °C and 45.5 mS cm?1 at 95 °C, respectively.  相似文献   
8.
This paper describes a facile method to control the morphology of polymer colloids and the architecture of polymer film via miniemulsion polymerization. By taking advantage of cyclization between the symmetrical diacrylate cross-linker hexamethylene diacrylate (HDDA) and the pendent vinyl in colloidal particles, the morphology of polymer colloids and the architecture of the after-formed polymer film were able to be well controlled by tuning the loading of cross-linker HDDA and crosslinking time. Four kinds of polymer colloid morphologies and four kinds of film architecture (honeycomb, close-packed, loose-packed, and enhanced-honeycomb) were characterized by TEM. The film formation mechanisms behind them were proposed based on the special and interesting results including Z-average size of the colloidal particles, Mc (molecular weight between crosslinking points) and mechanical properties of polymer film. Our results highly suggested that the morphology of polymer colloids and the polymer film architecture together determine the adhesive properties of the colloidal polymer film. The best of 180°-peel resistance, T-peel resistance and shear resistance of the polymer films were 138.12 N/25 mm, 40.98 N/25 mm and 25.72 N/cm2 at 2.0 phm, 2.0 phm and 0.4 phm with the same crosslinking time of 90 min, respectively. The proposed method is promising to be scaled up for industrial production due to its well adaptability.  相似文献   
9.
Reducing the Platinum (Pt) loading while maintaining the performance is highly desired for promoting the commercial use of proton exchange membrane fuel cells (PEMFCs). Different methods have been adopted to fabricate catalyst layers (CLs) with low Pt loading, including utilizing lower Pt/C catalysts (MA), mixing high Pt/C catalysts with bare carbon black particles (MB), and reducing CL thickness while maintaining high Pt/C ratio (MC). In this study, self-developed pore-scale model is adopted to investigate the performance of the three Pt reduction methods. It is found that MA shows the best performance while MB shows the worst. Then, effects of Pt dispersion are further explored. The results show that denser Pt sites will result in higher local oxygen flux and thus higher local transport resistance. Therefore, MA method, which shows the better Pt dispersion, leads to improved performance. Third, CLs with quasi-realistic structures are investigated. Higher tortuosity resulting from the random pores produces higher bulk resistance along the thickness direction, while MA still exhibits the best performance. Finally, improved CL structures are investigated by designing perforated CL structures. It is found that adding perforations can significantly reduce the bulk transport resistance and can improve the CL performance. It is demonstrated that CL structure plays important roles on performance, and there are still huge potentials to further improve CL performance by increasing Pt dispersion and optimizing CL structures.  相似文献   
10.
徐应锦  王冬 《室内设计》2019,(2):95-100
长春洞是巍宝山保存最完整的宫 观,虽占地不到两亩①,却在有限的空间中 创造出九楼十院的空间格局。本文以长春洞 空间布局序列为研究对象,从知觉体验的 连续性入手,提出了空间变化对参观者情感 的影响,论述了在建筑空间布局序列中参观 者知觉体验逐层递进的控制机制,探讨了以 “起、承、转、合”为结构,以“知觉体验”为 章法的动态空间布局设计手法,希望为道教 建筑空间与其他超越日常的精神空间的研 究提供启示。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号