首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24438篇
  免费   1440篇
  国内免费   831篇
电工技术   1363篇
综合类   2124篇
化学工业   1774篇
金属工艺   2123篇
机械仪表   5013篇
建筑科学   5288篇
矿业工程   1417篇
能源动力   557篇
轻工业   234篇
水利工程   655篇
石油天然气   558篇
武器工业   145篇
无线电   518篇
一般工业技术   2662篇
冶金工业   1213篇
原子能技术   219篇
自动化技术   846篇
  2024年   39篇
  2023年   296篇
  2022年   637篇
  2021年   729篇
  2020年   751篇
  2019年   532篇
  2018年   564篇
  2017年   708篇
  2016年   802篇
  2015年   806篇
  2014年   1426篇
  2013年   1140篇
  2012年   1596篇
  2011年   1931篇
  2010年   1346篇
  2009年   1501篇
  2008年   1280篇
  2007年   1634篇
  2006年   1490篇
  2005年   1338篇
  2004年   1009篇
  2003年   887篇
  2002年   832篇
  2001年   621篇
  2000年   558篇
  1999年   443篇
  1998年   408篇
  1997年   316篇
  1996年   275篇
  1995年   194篇
  1994年   173篇
  1993年   109篇
  1992年   80篇
  1991年   53篇
  1990年   41篇
  1989年   31篇
  1988年   37篇
  1987年   27篇
  1986年   11篇
  1985年   10篇
  1984年   9篇
  1983年   4篇
  1982年   13篇
  1981年   2篇
  1980年   13篇
  1979年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(22):33177-33184
The rare earth (Yb3+) substituted W-type hexagonal ferrites with composition CaPb2-xYbxFe16O27 (x = 0.0, 0.5, 1.0, 1.5, 2.0) were synthesized by a facile and cost-effective sol-gel auto combustion method with post heat treatment. The synthesized hexagonal ferrites were characterized by a variety of analytical techniques, and an impedance analyzer was used to investigate the effects of Ytterbium on structural, magnetic, spectral and dielectric properties. The relationship between their impedance, structure and dielectric properties was investigated. The X-ray diffraction patterns verify the presence of single-phase W-type hexagonal ferrites. Physical properties such as Dbulk (bulk density), Dxrd (X-ray density), and P (porosity) of the CaPb2-xYbxFe16O27 W-type hexagonal ferrites were calculated. The bulk density of all the samples was decreased, and X-ray intensity was increased with the Ytterbium replacement in the W-type hexaferrite. By adding Yb3+ ions, the lattice parameters, cell volume and X-ray density were reduced due to the substitution of ytterbium with smaller ionic radii compared to the lead ion with large ionic radii. The AC-conductivity was increased from (1.523 × 10?5 to 6.699 × 10?5) Ωcm?1. The dielectric constant and tangent loss was found to decrease substantially. The magnetic properties were found to enhance by the substitution of Yb3+. The low coercivity value of Yb3+ substituted W-type hexagonal ferrites are suitable for magnetic recording media operated at a high-frequency regime. The enhancement of electrical, dielectric and magnetic characteristics suggests these materials as promising for multi-layer chip inductors (MLCIs) circuit applications.  相似文献   
2.
In this work we have investigated the effect of the solvent during the processing of SrFe12O19 platelet-based permanent magnets by cold sintering process (CSP) plus a post-thermal treatment. Several organic solvents: glacial acetic acid, oleic acid and oleylamine have been analyzed, optimizing the CSP temperatures at 190?270 °C, under pressures of 375?670 MPa and 6?50 wt% of solvent. Modifications in the morphological and structural properties are identified depending on the solvent, which impacts on the magnetic response. Independently of the solvent, the mechanical integrity of ferrite magnets obtained by CSP is improved by a post-annealing at 1100 °C for 2 h, resulting in relative densities around 92 % with an average grain size of 1 μm and a fraction of SrFe12O19 phase >91 %. HC ≥ 2.1 kOe and MS of 73 emu/g are obtained in the final sintered ceramic magnets, exhibiting the highest HC value of 2.8 kOe for the magnet sintered using glacial acetic acid.  相似文献   
3.
We investigate synthesis, phase evolution, hollow and porous structure and magnetic properties of quasi-amorphous intermediate phase (QUAIPH) and hematite (α-Fe2O3) nanostructure synthesized by annealing of akaganeite (β-FeOOH) nanorods. It is found that the annealing temperature determines the phase composition of the products, the crystal structure/size dictates the magnetic properties whereas the final nanorod morphology is determined by the starting material. Annealing of β-FeOOH at ~300 °C resulted in the formation of hollow QUAIPH nanorods. The synthesized material shows low-cytotoxicity, superparamagnetism and good transverse relaxivity, which is rarely reported for QUAIPH. The QUAIPH nanorods started to transform to porous hematite nanostructures at ~350 °C and phase transformation was completed at 600 °C. During the annealing, the crystal structure changed from monoclinic (akaganeite) to quasi-amorphous and rhombohedral (hematite). Unusually, the crystallite size first decreased (akaganeite → QUAIPH) and then increased (QUAIPH → hematite) during annealing whereas the nanorods retained particle shape. The magnetic properties of the samples changed from antiferromagnetic (akaganeite) to superparamagnetic with blocking temperature TB = 84 K (QUAIPH) and finally to weak-ferromagnetic with the Morin transition at TM = 244 K and high coercivity HC = 1652 Oe (hematite). The low-cytotoxicity and MRI relaxivity (r2 = 5.80 mM?1 s?1 (akaganeite), r2 = 4.31 mM?1 s?1 (QUAIPH) and r2 = 5.17 mM?1 s?1 (hematite)) reveal potential for biomedical applications.  相似文献   
4.
《Soils and Foundations》2022,62(6):101222
This work addresses the problem of the loading capacity of an anchor plate coupled with a steel wire mesh in soil retaining applications. The interaction mechanism between the flexible mesh facing, the underlying soil layer and the plate is studied starting from the results of several laboratory punch tests involving both the plate and the mesh only, and the whole soil-mesh-plate system. The experimental tests have been reproduced by adopting a 3D discrete element model where also the wire mesh is discretized as an assembly of interconnected nodal particles. The interaction between these particles is ruled by elasto-plastic tensile force–displacement laws in which a distortion is introduced in a stochastic manner to account for the wires’ geometrical irregularities. The mesh model is then validated with reference to a set of punch tests in which the shape and size of the punching element as well as the nominal wire diameter were varied. Subsequently, the model is extended to a punch against soil test configuration permitting an insight into the nontrivial local mechanism between the mesh facing and the underlying granular layer. The good agreement between the numerical predictions and the experimental observations at the laboratory scale allowed us to extend the model towards more realistic field conditions for which the role of the mesh panel boundary conditions, the mesh mechanical properties, the soil mechanical properties and the anchor plate geometry is investigated.  相似文献   
5.
To investigate the influence of the addition of Pr–Ga alloys on magnetic properties and morphology of materials, the hot-deformed PrNd-Fe-B magnets were prepared by the addition of Pr–Ga alloys using a dual-alloys diffusion. The room-temperature coercivity of the hot-deformed PrNd-Fe-B magnets increases substantially from 1.68 to 2.34 T, while the remanence decreases from 1.42 to 1.24 T, by the addition of 5 wt% Pr–Ga alloys. Moreover, the thermal stability of coercivity improves from ?0.46%/oC to ?0.42%/oC. Two types of grain boundary phases (PrNd-rich and PrNd-Ga-rich) are generated at grain boundaries by microstructural analysis, resulting in the decrease of Fe element concentration from more than 60% to about 10% at grain boundaries. The decrease of ferromagnetic element concentration at grain boundaries and the refinement of grain are considered to be the main reasons for the improvement of coercivity and thermal stability.  相似文献   
6.
The table-like magnetocaloric effect is significant for the magnetic refrigeration applications above 20 K based on the Ericsson cycle. Herein, we prepared a series of Nd6Fe13Pd1–xCux (x = 0.05, 0.1, 0.15) compounds by the arc-melting method. These compounds show the single crystalline phase in the tetragonal Nd6Fe13Si-type structure with the space group I4/mcm. A magnetic phase transition from ferromagnetism to antiferromagnetism and a metamagnetic transition from the antiferromagnetic state to the ferromagnetic state are observed in each of the compounds. The compounds exhibit table-like magnetocaloric effects with large refrigerant capacities. A constant ΔSM in a temperature span of 40 K in the Nd6Fe13Pd0.85Cu0.15 compound are observed. For a field change of 0–5 T, the peak values of –ΔSM for the Nd6Fe13Pd0.95Cu0.05, Nd6Fe13Pd0.90Cu0.10, and Nd6Fe13Pd0.85Cu0.15 compounds are estimated to be 4.8, 4.6 and 4.4 J/(kg·K) with corresponding refrigerant capacity values of 323, 331 and 316 J/kg, respectively. The obtained table-like magnetocaloric effects with large refrigerant capacities as well as fairly small thermal and magnetic hysteresis deem these series of compounds good candidates for single-phase magnetic refrigeration based on the Ericsson cycle.  相似文献   
7.
8.
Low cost and high abundance rare earth elements Y and Ce have attracted tremendous interests of the industrial and scientific societies for fabricating the highly cost-performance efficient rare earth permanent magnets. However, the effect of separate replacement of Nd by Y or Ce on the performances of NdFeB-type magnet under the same atomic ratio and preparation conditions is still unclear. In this work, we systematically investigated the magnetic properties, thermal stabilities and service performances of (Nd0.8Y0.2)13.80FebalAl0.24Cu0.1B6.04 (atomic fraction, denoted as 20Y) and (Nd0.8Ce0.2)13.80FebalAl0.24Cu0.1B6.04 (atomic fraction, denoted as 20Ce) magnets. The results demonstrate that the μ0Mr, μ0Hc and (BH)max of 20Y magnet are respectively 1.325 T, 1.173 T and 343.467 kJ/m3, which are comprehensively higher than those of 20Ce magnet (μ0Mr = 1.310 T, μ0Hc = 0.948 T, (BH)max = 321.105 kJ/m3). Moreover, the 20Y magnet has higher thermal stability compared with 20Ce magnet which is favorable for the magnetic performances at elevated temperatures. The investigation of microstructure and elemental distribution indicates that the excellent magnetic performances of NdY-Fe-B magnet can be attributed not only to the preferable intrinsic properties 4πMs, Ha and Tc of Y2Fe14B, but also to the in-situ core–shell structure of the 2:14:1 matrix phase grain with Y-rich core and Nd-rich shell, along with the thicker grain boundary layer between the adjacent matrix phase grains in NdY-Fe-B magnet. Furthermore, the 20Y magnet exhibits better mechanical property and higher corrosion resistance than 20Ce magnet, which are helpful for prolonging the service life of the magnet in practical application.  相似文献   
9.
10.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号