首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4755篇
  免费   232篇
  国内免费   443篇
电工技术   117篇
综合类   198篇
化学工业   380篇
金属工艺   1048篇
机械仪表   188篇
建筑科学   5篇
矿业工程   28篇
能源动力   187篇
轻工业   42篇
石油天然气   1篇
武器工业   37篇
无线电   929篇
一般工业技术   1934篇
冶金工业   125篇
原子能技术   141篇
自动化技术   70篇
  2024年   10篇
  2023年   55篇
  2022年   104篇
  2021年   124篇
  2020年   96篇
  2019年   105篇
  2018年   92篇
  2017年   148篇
  2016年   128篇
  2015年   142篇
  2014年   142篇
  2013年   225篇
  2012年   400篇
  2011年   472篇
  2010年   368篇
  2009年   395篇
  2008年   375篇
  2007年   378篇
  2006年   364篇
  2005年   245篇
  2004年   187篇
  2003年   149篇
  2002年   120篇
  2001年   101篇
  2000年   87篇
  1999年   68篇
  1998年   64篇
  1997年   43篇
  1996年   41篇
  1995年   40篇
  1994年   36篇
  1993年   27篇
  1992年   18篇
  1991年   14篇
  1990年   14篇
  1989年   15篇
  1988年   10篇
  1987年   11篇
  1986年   8篇
  1985年   2篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有5430条查询结果,搜索用时 23 毫秒
1.
《Ceramics International》2021,47(24):34455-34462
Herein, the tungsten trioxide (WO3) nanostructure thin films with different morphologies are firstly fabricated by magnetron sputtering with glancing angle deposition technique (MS-GLAD), followed by the post annealed treatment process in air ambient for 2 h. It is demonstrated that the geometry of MS-GLAD setup, mainly substrate position, played a crucial role in determining the morphology, crystallinity, optical transmittance, and photo-electrochemical (PEC) performance of the WO3 nanostructured thin film. With the different substrate positions in the MS-GLAD system, the WO3 nanorod film layer could be precisely changed to combine an underlying dense layer with a nanorod layer and then nanocolumnar film. Moreover, the prepared samples' chemical composition and work function are studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), respectively. The combining WO3 nanostructure produced high PEC efficiency compared to the single layer of the WO3 nanorods sample and the dense WO3 thin film sample. Thus, morphology-controlled nanostructure film based on the MS-GLAD technique in our study provides a simple approach to enhance the photo-anode for PEC water splitting application.  相似文献   
2.
采用电路仿真软件仿真滤波组件S参数曲线,观察曲线随器件参数的变化;介绍利用三维全波电磁仿真软件HFSS简化设计流程的方法,并与测试结果对比。结果表明:利用3D仿真软件在满足器件设计精度的同时可以简化线圈的设计流程。  相似文献   
3.
In an attempt to optimize the properties of FeCoNi coating for planar solid oxide fuel cell (SOFC) interconnect application, the coating composition is modified by increasing the ratio of Fe/Ni. An Fe1·5CoNi0.5 (Fe:Co:Ni = 1.5:1:0.5, atomic ratio) metallic coating is fabricated on SUS 430 stainless steel by magnetron sputtering, followed by oxidation in air at 800°C. The Fe1·5CoNi0.5 coating is thermally converted to (Fe,Co,Ni)3O4 and (Fe,Co,Mn,Ni)3O4 without (Ni,Co)O particles. After oxidation for 1680 h, no further migration of Cr is detected in the thermally converted coating region. A low oxidation rate of 5.9 × 10?14 g2 cm?4 s?1 and area specific resistance of 12.64 mΩ·cm2 is obtained for Fe1·5CoNi0.5 coated steels.  相似文献   
4.
Magnetron sputtered low-loading iridium-ruthenium thin films are investigated as catalysts for the Oxygen Evolution Reaction at the anode of the Proton Exchange Membrane Water Electrolyzer. Electrochemical performance of 50 nm thin catalysts (Ir pure, Ir–Ru 1:1, Ir–Ru 1:3, Ru pure) is tested in a Rotating Disk Electrode. Corresponding Tafel slopes are measured before and after the CV-based procedure to compare the activity and stability of prepared compounds. Calculated activities prior to the procedure confirm higher activity of ruthenium-containing catalysts (Ru pure > Ir–Ru 1:3 > Ir–Ru 1:1 > Ir pure). However, after the procedure a higher activity and less degradation of Ir–Ru 1:3 is observed, compared to Ir–Ru 1:1, i.e. the sample with a higher amount of unstable ruthenium performs better. This contradicts the expected behavior of the catalyst. The comprehensive chemical and structural analysis unravels that the stability of Ir–Ru 1:3 sample is connected to RuO2 chemical state and hcp structure. Obtained results are confirmed by measuring current densities in a single cell.  相似文献   
5.
《Ceramics International》2022,48(8):10921-10931
Coatings were obtained by vacuum electro-spark alloying (VESA), pulsed cathodic arc evaporation (PCAE), magnetron sputtering (MS) techniques and VESA-PCAE-MS hybrid technology using Cr3C2–NiAl electrodes. The structure of the coatings was analyzed using scanning and transmission electron microscopy, X-ray diffraction and energy-dispersive spectroscopy. Mechanical properties were determined by nanoindentation, while tribological properties were assessed using pin-on-disk tribometer. Corrosion resistance was estimated by voltammetry in 1 N H2SO4 and 3.5%NaCl solutions. Oxidation resistance tests were performed at 800°С in air. The VESA coating had the highest thickness, low friction coefficient and high wear resistance. PCAE coating demonstrated the highest hardness (24 GPa) and elastic recovery (59%), oxidation resistance and superior corrosion resistance both in 1 N H2SO4 (icorr = 70 μА/cm2) and 3.5%NaCl (icorr = 0.74 μА/cm2) solutions. The MS coating had average mechanical properties and low corrosion current density (71 μА/cm2) in 1 N H2SO4. Deposition of coatings using VESA-PCAE-MS hybrid technology led to an increase in corrosion and oxidation resistance at least by 1.5 times in comparison with the VESA coating.  相似文献   
6.
The paper investigates the influence of the La0.6Sr0.4CoO3-δ-Gd0.1Ce0.9O1.95 (LSC-GDC) composite cathode interlayer on the operation of solid oxide fuel cells (SOFCs). Thin composite layers with the different GDC content are obtained by the reactive magnetron sputtering. The impact of the high-temperature annealing on the LSC-GDC phase composition is studied by the X-ray diffraction instrument using additionally a synchrotron radiation. The NiO-YSZ anodes with the YSZ electrolyte thin film and GDC barrier layer are used for the SOFC fabrication. The current-voltage curves and impedance spectra of SOFCs are obtained in the temperature range of 700–800°С. It is shown that not annealed composite layers with ~50 vol% GDC content possess the most efficient electrochemical activity. The maximum power density of the SOFC with the LSC-GDC interlayer is 1322, 1041 and 796 mW/cm2 at 800, 750 and 700 °C, respectively, which is 20–35% higher than that of the cell without cathode interlayer.  相似文献   
7.
Indium Tin Oxide (ITO) films were prepared, at room temperature, on a fluorphlogopite substrate using magnetron sputtering technology. At various temperatures of 500 °C, 600 °C, 700 °C, 800 °C, and 900 °C, the samples were (had) annealed for 2 h (a 2-h duration). The results showed improvement in the crystalline performance of ITO film at selected annealing temperatures, with a significant reduction in resistivity at 800 °C. The lowest resistivity is 4.08 × 10?4 Ω-cm, which is nearly an order of magnitude lower than the unannealed sample. All samples have an average light transmittance above 85% in the visible light range (400–800 nm), and with increasing annealing temperature, the average light transmittance tends to decrease. Besides, at the sensitive wavelength of 550 nm, the light transmittance is as high as 93.74%. The sheet resistance testing of the sample was through the number of bending times, which revealed that with the increase of the number of bending, the sheet resistance increases. However, after 1200 bending times, the change rate of the sheet resistance remains below 5%. Thus, the ITO film prepared on the flexible fluorphlogopite substrate revealed excellent optical and electrical properties, good flexibility, and improved stability after high-temperature annealing, which guarantees successful application in flexible electronic devices.  相似文献   
8.
Element doping into the Cu2ZnSn(S,Se)4 (CZTSSe) absorber is an effective method to optimize the performance of thin film solar cells. In this study, the Cu2InxZn1-xSn(S,Se)4 (CIZTSSe) precursor film was deposited by magnetron cosputtering technique using indium (In) and quaternary Cu2ZnSnS4 (CZTS) as targets. Meanwhile, the In content was controlled using the direct current (DC) power on In target (PIn). A single kesterite CIZTSSe alloy was formed by successfully doping a small number of In3+ into the main lattice of CZTSSe. The partial Zn2+ cations were substituted by In3+ ions, resulting in improving properties of CZTSSe films. Morphological analysis showed that large grain CIZTSSe films could be obtained by doping In. The well-distributed, smooth, and dense film was obtained when the PIn was 30 W. The band gap of CIZTSSe could be continuously adjusted from 1.27 to 1.05 eV as PIn increased from 0 to 40 W. In addition, the CIZTSSe alloy thin film at PIn = 30 W exhibited the best p-type conductivity with Hall mobility of 6.87 cm2V?1s?1, which is a potential material as the absorption layer of high-performance solar cells.  相似文献   
9.
《Ceramics International》2022,48(21):31491-31499
In this study, an all-solid-state electrochromic device (ECD) with the structure of ITO/WO3/Al2SiO5/NiOx/ITO was prepared, and the effect of the Al2SiO5 solid electrolyte thicknesses on the opto-electrical performance was investigated. The microstructure and surface morphology were characterized using XRD, SEM and AFM, and the surface morphology and degree of surface looseness demonstrate a significant influence on the opto-electrical properties of ECDs. The charge transfer dynamics at the solid-solid interface were characterized using EIS to obtain an ionic conductivity of 4.637 × 10-8 S/cm. CV, CA and UV–Visible spectra were employed to record the in situ electrochemical and optical properties. The results revealed that the highest optical modulation was 44.58%, the coloring and bleaching times were 14.8 s and 3.7 s, and the highest coloring efficiency was 98.17 cm2/C, which indicates that excellent opto-electrical properties were obtained. When the thickness increases, the degree of surface dense morphology transforms, and the loose morphology is more favorable for ion conductivity, which improves the opto-electrical properties. The results in this study provide insights into the understanding of Al3+-based all-solid-state ECDs, which promote the exploration of new types of Al3+ ionic conductors for all-solid-state ECDs.  相似文献   
10.
《Ceramics International》2022,48(3):3481-3488
Ga2O3 films were deposited on Si substrates through radio-frequency magnetron sputtering at room temperature and were annealed in situ in a high-vacuum environment. The as-deposited Ga2O3 film exhibited an island-like surface morphology and had an amorphous microstructure, with a few nanocrystalline grains embedded in it. After high-temperature in situ annealing, the films recrystallized and exhibited coalesced surfaces. Because of the thermally driven diffusion of Ga, the interfacial layer between Si and Ga2O3 was composed of SiGaOx. Compared with ex situ annealing in air, in situ annealing in high vacuum is more advantageous because it enhances surface mobility and improves the crystallinity of the Ga2O3 films. The higher oxygen vacancy concentration of in situ annealed films revealed that oxygen atoms were easily released from the Ga2O3 lattice during high-vacuum annealing. Photoluminescence (PL) spectra exhibited four emission peaks centered in ultraviolet, blue, and green regions, and the peak intensities were significantly enhanced by thermal annealing at >600 °C. This work elucidates the effect of the in situ annealing treatment on the recrystallization behavior, interfacial microstructure, oxygen vacancy concentration, and PL performance of the Ga2O3 films, making it significant and instructional for the further development of Ga2O3-based devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号