首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85477篇
  免费   8785篇
  国内免费   3426篇
电工技术   4013篇
技术理论   2篇
综合类   4350篇
化学工业   14299篇
金属工艺   12805篇
机械仪表   4733篇
建筑科学   4685篇
矿业工程   6142篇
能源动力   6758篇
轻工业   4452篇
水利工程   395篇
石油天然气   18856篇
武器工业   457篇
无线电   2182篇
一般工业技术   6204篇
冶金工业   4307篇
原子能技术   815篇
自动化技术   2233篇
  2024年   109篇
  2023年   970篇
  2022年   2082篇
  2021年   2637篇
  2020年   2819篇
  2019年   2419篇
  2018年   2205篇
  2017年   2602篇
  2016年   3157篇
  2015年   2975篇
  2014年   5352篇
  2013年   5526篇
  2012年   6406篇
  2011年   6787篇
  2010年   4650篇
  2009年   4551篇
  2008年   3939篇
  2007年   5076篇
  2006年   5368篇
  2005年   4394篇
  2004年   3897篇
  2003年   3433篇
  2002年   2857篇
  2001年   2603篇
  2000年   2166篇
  1999年   1742篇
  1998年   1351篇
  1997年   1166篇
  1996年   1001篇
  1995年   810篇
  1994年   630篇
  1993年   443篇
  1992年   355篇
  1991年   290篇
  1990年   237篇
  1989年   222篇
  1988年   88篇
  1987年   65篇
  1986年   48篇
  1985年   42篇
  1984年   32篇
  1983年   24篇
  1982年   22篇
  1981年   63篇
  1980年   36篇
  1979年   7篇
  1977年   5篇
  1976年   3篇
  1973年   5篇
  1951年   14篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
利用蒸馏分离—气相色谱法技术,建立了同时测定煤焦油中苊、氧芴和芴的分析方法。通过对色谱条件的优化,以甲苯为溶剂,正十二烷为内标物,将煤焦油馏分采用DB-5毛细管柱,对煤焦油中苊、氧芴和芴定量分析。分析结果表明:3种主要成分线性关系良好,相关系数均大于0.9995,加标回收率为95.4%~102.4%,相对标准偏差为2.89%~7.14%。该方法分离效果好,检测结果准确、可靠。  相似文献   
2.
介绍了用AC8612气相色谱仪对六个汽油组分馏程分析的应用情况,结果表明:该方法的重复性和准确性都较好,与D86相比,结果满足方法的再现性要求,但对于差值大于3℃的点,应定期进行修正,以使结果更准确,该方法用于炼油厂各装置汽油组分馏出口的日常质量监测分析,可以提高分析效率并减少劳动强度。  相似文献   
3.
四川盆地蕴含丰富的致密砂岩气资源,近期利用高精度三维资料开展侏罗系沙溪庙组河道砂体勘探取得突出成效。沙溪庙组河道砂体具有横向变化快、储层非均质性强的特点,因此提高河道砂体的边界识别及其含气性预测精度是致密气地震勘探的关键。通过开展AVO特征低频保护的“六分法”(分类、分频、分时、分域、分步和分区)高保真叠前去噪、近地表Q补偿和OVT域叠前时间偏移等技术攻关,形成了一套针对川中地区侏罗系沙溪庙组致密气藏的“双高”(高保真、高分辨率)地震处理技术,并创新应用“双亮点”属性及多波、多分量砂体含气性地震预测等解释技术,提高了含气砂体预测精度。该技术系列在川中沙溪庙组致密气预测应用成果显著,地震数据频带得到了拓宽,低频信息更加丰富,资料信噪比明显提升,河道边界及其含气性预测的精度大幅提高,钻井成功率超过83%,应用成果有力地支撑了该地区沙溪庙组致密气的增储上产。  相似文献   
4.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
5.
Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-quality metal parts by WAAM,several problems about the heat build-up,the deposit-path optimization,and the stability of the process parameters need to be well addressed.To overcome these issues,a new WAAM method based on the double electrode micro plasma arc welding(DE-MPAW)was designed.The circuit principles of different metal-transfer models in the DE-MPAW deposition process were analyzed theoretically.The effects between the parameters,wire feed rate and torch stand-off distance,in the process of WAAM were investigated experimentally.In addition,a real-time DE-MPAW control system was developed to optimize and stabilize the deposition process by self-adaptively changing the wire feed rate and torch stand-off distance.Finally,a series of tests were performed to evaluate the con-trol system's performance.The results show that the capability against interferences in the process of WAAM has been enhanced by this self-adaptive adjustment system.Further,the deposition paths about the metal part's layer heights in WAAM are simplified.Finally,the appearance of the WAAM-deposited metal layers is also improved with the use of the control system.  相似文献   
6.
Based on the experimental reports, Au-decoration on the ZnO nanostructures dramatically increases the electronic sensitivity to H2S gas. In the current study, we computationally scrutinized the mechanism of Au-decoration on a ZnO nanotube (ZON) and the influence on its sensing behavior toward H2S gas. The intrinsic ZON weakly interacted with the H2S gas with an adsorption energy of ?11.2 kcal/mol. The interaction showed no effect on the HOMO–LUMO gap and conductivity of ZON. The predicted response of intrinsic ZON toward H2S gas is 6.3, which increases to 78.1 by the Au-decoration at 298 K. The corresponding experimental values are about 5.0 and 80.0, indicating excellent agreement with our findings. We showed that the Au atom catalyzes the reaction 3O2?+?2H2S?→?2SO2?+?2H2O. Our calculated energy barrier (at 298 K) is about 12.3 kcal/mol for this reaction. The gap and electrical conductance Au-ZON largely changed by this reaction are attributed to the electron donation and back-donation processes. The obtained recovery time is about 1.35 ms for desorption of generated gases from the surface of the Au-ZON sensor.  相似文献   
7.
Hydrodynamics characteristics of a fast and highly exothermic liquid–liquid oxidation process with in situ gas production in microreactors were studied using a newly developed experimental method. In the adipic acid synthesis through the K/A oil (the mixture of cyclohexanol and cyclohexanone) oxidation with nitric acid, bubble generation modes were divided into four categories. The gas production became more intensive, unstable, even explosive with increasing the oil phase feed rate and the temperature. A novel automatic image processing method was developed to monitor the instantaneous velocity online by tracking the gas–liquid interface. The axial velocity at the same location was unstable due to the changing gas production rate. Furthermore, the actual residence time was obtained easily with being only 36% of the space–time minimally, beneficial for establishing accurate kinetics and mass transfer models with time participation. Finally, an empirical correlation was developed to predict the actual residence time under different conditions.  相似文献   
8.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
9.
With lower alloying cost and higher mechanical properties, lean duplex stainless steels can be an alternative to the more commonly used austenitic stainless steels. However, these alloys are still not the preferred choice, probably due to a lack of field experience. A study was thus initiated in view of defining the limits of use of selected (lean) duplexes for urban wastewater treatment units. The present paper shows the localized corrosion performance of selected lean duplexes in chloride contaminated solutions. The results are compared with austenitic S30403 and S31603 and with the more standard duplexes S82441 and S32205. The effect of welding was also investigated. Exposures in field municipal wastewater plants were conducted for 1 year in low and high chloride content units. The results show that lean duplexes S32101 and S32202 can be used as alternatives to S30403 and S31603 in low chloride electrolytes. At 500 ppm of chloride content, duplex stainless steel S32304 showed better corrosion resistance than S30403 and S31603. For higher chloride contents (1000 ppm and above) the standard duplexes S82441 and S32205 shall be preferred.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号