首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3658461篇
  免费   306447篇
  国内免费   181752篇
电工技术   228230篇
技术理论   260篇
综合类   338078篇
化学工业   554875篇
金属工艺   191641篇
机械仪表   208780篇
建筑科学   326764篇
矿业工程   123889篇
能源动力   133221篇
轻工业   289268篇
水利工程   88408篇
石油天然气   141484篇
武器工业   35816篇
无线电   348397篇
一般工业技术   338748篇
冶金工业   169937篇
原子能技术   41768篇
自动化技术   587096篇
  2024年   4812篇
  2023年   43641篇
  2022年   70983篇
  2021年   98285篇
  2020年   100732篇
  2019年   80726篇
  2018年   74721篇
  2017年   94973篇
  2016年   104389篇
  2015年   117049篇
  2014年   211574篇
  2013年   215091篇
  2012年   249833篇
  2011年   289862篇
  2010年   222818篇
  2009年   235463篇
  2008年   217014篇
  2007年   259090篇
  2006年   237086篇
  2005年   200040篇
  2004年   169842篇
  2003年   153506篇
  2002年   124809篇
  2001年   100372篇
  2000年   83396篇
  1999年   65936篇
  1998年   50539篇
  1997年   42874篇
  1996年   38955篇
  1995年   34787篇
  1994年   29496篇
  1993年   21691篇
  1992年   18750篇
  1991年   14736篇
  1990年   12310篇
  1989年   10493篇
  1988年   7576篇
  1987年   5177篇
  1986年   4027篇
  1985年   4311篇
  1984年   4100篇
  1983年   3049篇
  1982年   2865篇
  1981年   1571篇
  1980年   1504篇
  1979年   1267篇
  1978年   751篇
  1977年   719篇
  1964年   658篇
  1959年   638篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
1.
Fiber production from inorganic industrial solid wastes is an effective waste management strategy. Because of cost considerations, most enterprises generally use local solid wastes as raw materials to produce fibers. In this study, we explored the feasibility of producing fibers using fly ash and magnesium slag. The results show that the melting temperature of the blends composed of fly ash, magnesium slag, and a small amount of calcined dolomite first decreased and then increased with an increase in acidity coefficient (Mk) from 1.0 to 2.4. The samples could form a eutectic system in the Mk range of 1.4–1.8, and therefore have a relatively low melting temperature in this Mk range. Fly ash could react with magnesium slag and calcined dolomite to form akermanite, gehlenite-magnesium, and anorthite at temperatures close to the melting temperature; therefore, these crystalline phases were the main reaction products formed in the samples with Mk values lower than 1.80. Anorthite reacted further with some Na-containing and Si-containing spieces to produce labradorite. Thus, the content of anorthite and labradorite rapidly increased and they became the major crystal phases in the blend samples with Mk values greater than 1.80. MAS-NMR spectroscopic analysis revealed that the network structure of the melts depended on the ratio of bridging oxygen to non-bridging oxygen; a high ratio of bridging oxygen to non-bridging oxygen could lead to the formation of a dense network structure in the melt. The blends of fly ash and magnesium slag can be used to produce wool fibers and continuous fibers. In addition, the suitable temperature ranges for the production of both types of fibers were determined. The drawing temperature for continuous fiber production depended on the degree of polymerization and structure of the melt.  相似文献   
2.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   
3.
《Ceramics International》2021,47(23):33106-33119
K9 optical glass is one of the typical components in optical systems. However, because of its poor fracture resistance, it is difficult to polish it with ultra-precision and high-efficiency and without any surface damage simultaneously. The emergence of the obliquely axial ultrasonic vibration-assisted polishing (UVAP) method can solve this problem which encounters in polishing efficiency and shape accuracy. However, due to the unclear material removal profile (MRP) mechanism, obliquely axial UVAP is not widely used in the processing field. This paper introduces the obliquely axial UVAP method in research processes, mainly focusing on the fixed point MRP analysis of the obliquely axial UVAP. Based on Hertz's contact theory, polishing pressure, the length of the semi-long axis (LLA) and the length of the semi-short axis (LSA) of the contact area are calculated under ultrasonic vibration conditions. Meanwhile, the relative linear velocity distribution of the oblique polishing tool in the instantaneous contact area is modeled by mathematical geometry method. A novel model of the MRP distribution for obliquely axial UVAP is proposed following the Preston equation. Subsequently, a series of polishing experiments were carried out to verify this model. The results show that the numerical model has good agreement with the experimental results on MRP, LLA, LSA, material removal depth and material removal rate (MRR). In addition, the material removal capability can be significantly improved by larger ultrasonic amplitude and larger oblique angle. This model not only more clearly elucidates the processing mechanism of obliquely axial UVAP, but also provides theoretical support for the polishing of free-form optical lenses.  相似文献   
4.
Samples in Si–Al-R-O-N (R = Y, Gd, Yb) systems were prepared by solid-state reactions using R2O3, Al2O3, SiO2 and Si3N4 powders as starting materials. X-ray diffraction was done to investigate RAM-J(R) solid solutions [RAM = R4Al2O9, J(R) = R4Si2N2O7] formation and their equilibrium with RSO (R4Si2O10). Phase relations between RAM, J(R) and RSO at 1700 °C were summarized in a phase diagram. It was determined that a limited solid solution of RAM and RSO could be formed along RAM-RSO tie-line, while RAM and J(R) form a continuous solid solution along RAM-J(R) tie-line. In RAM-J(R)-RSO ternary systems, the RAM-J(R) tie-lines were extended towards the RSO corner to form a continuous solid solution area of JRAMss (R = Y, Gd, Yb). The established phase relations in the Si–Al-R-O-N (R = Y, Gd, Yb) systems may facilitate compositional selections for developing JRAMss as monolithic ceramics or for SiC/Si3N4 based composites using the solid-solutions as a second refractory phase.  相似文献   
5.
Because of its ability to change optical absorption dynamically by applied electric field, nickel oxide (NiO) is a promising anodic material in smart windows, which can improve energy conversion efficiency in construction buildings. Although many works have achieved high electrochromic performance with different method. The underlying mechanism is still not fully investigated. In this article, we prepared the NiO films with large specific surface area and high stability by electron beam evaporation. X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to figure out the surface morphology and composition of as-deposited films. Afterwards, the electrochemical properties and optical performance of the prepared NiO films were investigated. On this basis, the origin of surface charge was fully analyzed by cyclic voltammetry and diffusion coefficient test. These experimental and theoretical results firmly confirm that both the surface reaction and capacitive effect bring about the excellent EC performance in NiO films. These results not only provide clear evidence about electrochemical kinetics in NiO films, but also offer some useful guidelines for the design of EC materials with higher performance and longer stability.  相似文献   
6.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
7.
The main drawback of bioglasses is their restricted use in load bearing applications and the consequent need to develop stronger glassy materials. This has led to the consideration of oxynitride glasses for numerous biomedical applications. This paper investigated two different types of glasses at a constant cationic ratio, with and without nitrogen (a N containing and a N-free glass composition) to better understand the effect of N on the biological properties of glasses. The results revealed that the addition of N increased the glass transition temperature, isoelectric point (IEP) and slightly increased wettability. Moreover, compared to N including glass, N-free glass exhibited better anti-bacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), two key bacteria that infect implants. In summary, these in vitro results indicated that amine functional groups existing in N containing glasses which are missing in N-free glasses, caused a slight difference in wetting behavior and a more obvious change in isoelectric point and in bacterial response. N-free glasses exhibited better inhibitory results both against E. coli and S. aureus compared to N including glass suggesting that oxygen rich glasses should be further studied for their novel antibacterial properties.  相似文献   
8.
《Ceramics International》2021,47(19):27386-27394
In order to control the pore characteristics and macroscopical performance of porous ceramics, roles of the freeze casting parameters are the key points. Herein, aligned dendritic porous SiC was fabricated by freeze casting of PCS-camphene solutions with different solid loading, freeze front velocity, temperature gradient, and freezing temperature. Influence of these parameters on the microstructure and compressive strength of porous SiC was investigated. With increasing the PCS content, freeze temperature, freeze front velocity or temperature gradient, degree of undercooling of the camphene was increased, resulting in the formation of smaller pore size, decreased porosity and increased compressive strength. Compared to variables of freeze temperature and temperature gradient, increased freeze front velocity was more efficiency in improving the compressive strength of porous SiC, owing to the formation of smaller pore size and longer secondary dendritic crystals. Promising micron-sized porous SiC with high porosity (79.93 vol%) and satisfactory strength (15.84 MPa) was achieved for 10% PCS-camphene solution under optimized freezing conditions.  相似文献   
9.
《Ceramics International》2021,47(19):27479-27486
Threshold switching (TS) devices have evolved as one of the most promising elements in memory circuit due to their important significance in suppressing crosstalk current in the crisscross array structure. However, the issue of high threshold voltage (Vth) and low stability still restricts their potential applications. Herein, the vanadium oxide (VOx) films deposited by the pulsed laser deposition (PLD) method are adopted as the switching layer to construct the TS devices. The TS devices with Pt/VOx/Pt/PI structure exhibit non-polar, electroforming-free, and volatile TS characteristics with an ultralow Vth (+0.48 V/−0.48 V). Besides that, the TS devices also demonstrates high stability, without obviously performance degradations after 350 cycles of endurance measurements. Additionally, the transition mechanism is mainly attributed to the synergistic effect of metal-insulator transition of VO2 and oxygen vacancies. Furthermore, the nonvolatile bipolar resistance switching behaviors can be obtained by changing oxygen pressure during the deposition process for switching films. This work demonstrates that vanadium oxide film is a good candidate as switching layer for applications in the TS devices and opens an avenue for future electronics.  相似文献   
10.
《Ceramics International》2021,47(19):27487-27495
ZnO nanorod arrays (NRs) with a large number of sharp tips and uniform shapes were grown on the carbon cloth (CC) by a simple hydrothermal method. Titanium nitride (TiN) nanoparticles with various thicknesses were deposited on the ZnO NRs by magnetron sputtering to obtain ZnO/TiN core-shell arrays. Field emission (FE) performance of ZnO NRs show close dependence on TiN coating thickness. The turn-on field first decreases and then increases with increasing TiN coating thickness from 60 nm to 300 nm. The arrays with a design architecture can strike a balance between increased emission sites and limited field shielding effects. ZnO/TiN240 core-shell NRs have the lower turn-on electric field at 0.79 V/μm and the higher current densities at 9.39 mA/cm2. The field enhancement factor (β) of ZnO/TiN240 is about 3.2 times that of the bare ZnO NRs. On the other hand, the electrochemical properties were improved due to the formation of core-shell heterojunction on the ZnO/TiN interface and porous structure, which makes the ion and charge transport more convenient. Hence, this work not only revealed that the ZnO/TiN core-shell structure exhibited excellent improvement in both FE and supercapacitors applications, but also that growing arrays on CC was expected to achieve flexible display.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号