首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17833篇
  免费   2275篇
  国内免费   1245篇
电工技术   1605篇
综合类   1789篇
化学工业   2108篇
金属工艺   1115篇
机械仪表   1383篇
建筑科学   1175篇
矿业工程   534篇
能源动力   300篇
轻工业   673篇
水利工程   227篇
石油天然气   546篇
武器工业   160篇
无线电   3686篇
一般工业技术   3332篇
冶金工业   461篇
原子能技术   249篇
自动化技术   2010篇
  2024年   20篇
  2023年   321篇
  2022年   326篇
  2021年   483篇
  2020年   608篇
  2019年   542篇
  2018年   523篇
  2017年   690篇
  2016年   705篇
  2015年   728篇
  2014年   1000篇
  2013年   1002篇
  2012年   1259篇
  2011年   1277篇
  2010年   939篇
  2009年   983篇
  2008年   994篇
  2007年   1210篇
  2006年   1212篇
  2005年   1028篇
  2004年   870篇
  2003年   814篇
  2002年   600篇
  2001年   622篇
  2000年   491篇
  1999年   322篇
  1998年   309篇
  1997年   262篇
  1996年   205篇
  1995年   187篇
  1994年   175篇
  1993年   113篇
  1992年   112篇
  1991年   92篇
  1990年   73篇
  1989年   56篇
  1988年   46篇
  1987年   25篇
  1986年   16篇
  1985年   26篇
  1984年   21篇
  1983年   13篇
  1982年   9篇
  1981年   8篇
  1980年   8篇
  1979年   7篇
  1976年   4篇
  1974年   5篇
  1961年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
配电网停电会造成电力系统供配电可靠性以及服务质量下降,研究基于地理信息系统(GIS)单线图的配网停电单模拟操作应用。利用网格长度作为基本单位建立坐标系,以选取起始点与终止点为基础,通过四参数法将GIS坐标映射至图纸网格内,实现配网内设备初步布局,将杆塔、站房和整体均匀分布作为优化目标,设置多目标优化目标函数实现GIS单线图最终优化。选取某电力公司配网作为单模拟操作应用对象,模拟结果表明,单模拟操作配网停电后,该配网各负荷点年故障率、次平均停电时间以及年停电时间均有所减少,可有效提升配网的供配电可靠性。  相似文献   
2.
To quantitatively investigate the initial crystallization of zeolite beta synthesized by direct heating, the extent of the reaction was precisely evaluated by X-ray diffraction measurements and Rietveld structural refinement, and a kinetic analysis of crystallization was performed using the Avrami-Erofe'ev equation. The activation energy for crystallization was lower than that for hydrothermal synthesis. Reaction and synthesis time curves revealed that the initial zeolite beta crystallization consisted of three stages. The first was an induction period with nucleation by the generation of building units and the formation of an initial coordinated structure. The second stage was crystal growth by a diffusion-controlled reaction, and the third stage involved slowing down of crystallization by the limitation of dehydrocondensation. These stages could be analyzed by calculation of the rate constant and Avrami exponent for each stage.  相似文献   
3.
Tissue engineering requires the precise positioning of mammalian cells and biomaterials on substrate surfaces or in preprocessed scaffolds. Although the development of 2D and 3D bioprinting technologies has made substantial progress in recent years, precise, cell-friendly, easy to use, and fast technologies for selecting and positioning mammalian cells with single cell precision are still in need. A new laser-based bioprinting approach is therefore presented, which allows the selection of individual cells from complex cell mixtures based on morphology or fluorescence and their transfer onto a 2D target substrate or a preprocessed 3D scaffold with single cell precision and high cell viability (93–99% cell survival, depending on cell type and substrate). In addition to precise cell positioning, this approach can also be used for the generation of 3D structures by transferring and depositing multiple hydrogel droplets. By further automating and combining this approach with other 3D printing technologies, such as two-photon stereolithography, it has a high potential of becoming a fast and versatile technology for the 2D and 3D bioprinting of mammalian cells with single cell resolution.  相似文献   
4.
In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges.  相似文献   
5.
Cubic zirconia single crystals stabilized with yttria and doped with Gd2O3 (0.10–5.00 mol%) were prepared by the optical floating zone method, and characterized by a combination of X-ray diffraction (XRD), and Raman, electron paramagnetic resonance (EPR), ultraviolet–visible (UV–Vis), photoluminescence excitation (PLE) and photoluminescence (PL) spectroscopic techniques. XRD and Raman spectroscopy showed that the crystal samples were all in the cubic phase, whereas the ceramic sample consisted of a mixture of monoclinic and cubic phases. The absorption spectrum showed four peaks at 245, 273, 308, and 314 nm in the ultraviolet region, and the optical band gap differed between samples with ≤3.00 mol% and those with >3.00 mol% Gd2O3. The emission spectrum showed a weak peak at 308 nm and a strong peak at 314 nm, which are attributed to the 6P5/2 → 8S7/2 and 6P7/2 → 8S7/2 transitions of Gd3+, respectively. The intensities of the peaks in the excitation and emission spectra increased with Gd3+ concentration, reached a maximum at 2.00 mol%, then decreased with higher concentrations. This quenching is considered to be the result of the electric dipole-dipole interactions, and this interpretation is supported by the Gd3+ EPR spectra, which showed progressive broadening with increasing Gd3+ concentration throughout the concentration range investigated.  相似文献   
6.
《Ceramics International》2022,48(21):31811-31817
As one of the outstanding piezoelectric materials, relaxor-PbTiO3 single crystal also exhibits promising electro-optic and nonlinear-optic properties. Therefore, it is vital to understand the domain switching kinetics not only for optimizing strain-mediated devices performance but also for fabricating optical waveguides and periodic domain structures in optical applications. In this work, domain switching kinetics in annealed and pre-poled PMN-0.38PT single crystal under different external electric field were studied. Polarization reversal can be accomplished only by c-domain nucleation and growth in the annealed sample where the formation of the ferroelastic domains is hindered. In pre-poled sample, 90° domain switching happened by 90° domain wall reorientation under low electric field while 180° domain switching is accomplished by two-step 90° domain switching and c-domain growth under high electric field. The results are important for modulating domain structure for strain mediated and optical devices.  相似文献   
7.
8.
This numerical study reveals the heat transfer performance of hybrid/single nanofluids inside a lid-driven sinusoidal trapezoidal-shaped enclosure. The right and left inclined surfaces of the trapezium have been considered as insulated, whereas the bottom sinusoidal wavy and the flat top surfaces of the enclosure as hot and cold, respectively. The governing partial differential equations of fluid's velocity and temperature have been resolved by applying the finite element method. The implications of Prandtl number (4.2-6.2), Richardson number (0.1-10.0), undulation number (0-3), nanoparticles volume fraction (0%-3%), and nanofluid/base fluid (water, water–copper (Cu), water–Cu–carbon nanotube, water–Cu–copper oxide (CuO), water–Cu–TiO2, and water–Cu–Al2O3) on the velocity and temperature profiles have been studied. Simulated findings have been represented by means of streamlines, isothermal lines, and average Nusselt number of above-mentioned hybrid nanofluids for varying the governing parameters. The comparison of heat transfer rates using hybrid nanofluids and pure water has been also shown. The heat transfer rate is increased about 15% for varying Richardson number from 0.1 to 10.0. Blending of two nanoparticles suspension in base fluid has a higher heat transfer rate—approximately 5% than a mononanoparticle. Moreover, a higher average Nusselt number is obtained by 14.7% using the wavy surface than the flat surface of the enclosure. Thus, this study showed that applying hybrid nanofluid may be beneficial to obtain expected thermal performance.  相似文献   
9.
The dynamical properties of spiraling elliptic breathers in nonlocal nonlinear media with linear anisotropy are analytically discussed. Using a two-dimensional asynchronous fractional Fourier transform, the exact analytical solutions of spiraling elliptic breathers are obtained to the nonlocal nonlinear Schrödinger equation with unequal diffraction coefficients in the highly nonlocal limit. It is found that the spiraling elliptic breathers exhibit a kind of molecule-like libration due to the combined effects of the linear anisotropy and the orbital angular momentum. The angular velocity of the spiraling elliptic breathers is discussed, which can be controlled by the linear anisotropy parameter. In the media with linear anisotropy such as uniaxial crystals, the angular velocity of the spiraling elliptic breathers can be controlled by changing the propagation directions of optical beams. Furthermore, the nonlinearity of media is found to enhance the rotation effect of spiraling elliptic breathers.  相似文献   
10.
In this paper, the design of all two-input logic gates is presented by only a single-stage single electron box (SEB) for the first time. All gates are constructed based on a same circuit. We have used unique periodic characteristics of SEB to design these gates and present all two-input logic gates (monotonic/non-monotonic, symmetric/non-symmetric) by a single-stage design. In conventional monotonic devices, such as MOSFETs, implementing non-monotonic logic gates such as XOR and XNOR is impossible by only a single-stage design, and a multistage design is required which leads to more complexity, higher power consumption and less speed of the gates. We present qualitative design at first and then detailed designs are investigated and optimised by using our previous works. All designs are verified by a single electron simulator which shows correct operation of the gates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号