首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53824篇
  免费   6398篇
  国内免费   3954篇
电工技术   2914篇
技术理论   1篇
综合类   5151篇
化学工业   6440篇
金属工艺   3278篇
机械仪表   2587篇
建筑科学   3254篇
矿业工程   2082篇
能源动力   1975篇
轻工业   3292篇
水利工程   1302篇
石油天然气   2774篇
武器工业   1693篇
无线电   8848篇
一般工业技术   5443篇
冶金工业   3219篇
原子能技术   1477篇
自动化技术   8446篇
  2024年   88篇
  2023年   783篇
  2022年   1575篇
  2021年   1850篇
  2020年   1987篇
  2019年   1658篇
  2018年   1532篇
  2017年   1921篇
  2016年   2080篇
  2015年   2298篇
  2014年   3502篇
  2013年   3686篇
  2012年   4272篇
  2011年   4504篇
  2010年   3351篇
  2009年   3318篇
  2008年   3023篇
  2007年   3730篇
  2006年   3052篇
  2005年   2622篇
  2004年   2191篇
  2003年   1912篇
  2002年   1593篇
  2001年   1323篇
  2000年   1089篇
  1999年   929篇
  1998年   756篇
  1997年   627篇
  1996年   599篇
  1995年   477篇
  1994年   367篇
  1993年   288篇
  1992年   253篇
  1991年   203篇
  1990年   166篇
  1989年   123篇
  1988年   90篇
  1987年   59篇
  1986年   57篇
  1985年   44篇
  1984年   39篇
  1983年   26篇
  1982年   25篇
  1981年   17篇
  1980年   18篇
  1978年   7篇
  1975年   9篇
  1964年   5篇
  1959年   13篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
2.
Fire spread and growth on real‐scale four cushion mock‐ups of residential upholstered furniture (RUF) were investigated with the goal of identifying whether changes in five classes of materials (barrier, flexible polyurethane foam, polyester fiber wrap, upholstery fabric, and sewing thread), referred to as factors, resulted in statistically significant changes in burning behavior. A fractional factorial experimental design plus practical considerations yielded a test matrix with 20 material combinations. Experiments were repeated a minimum of two times. Measurements included fire spread rates derived from video recordings and heat release rates (HRRs). A total of 13 experimental parameters (3 based on the videos and 10 on the HRR results), referred to as responses, characterized the measurements. Statistical analyses based on Main Effects Plots (main effects) and Block Plots (main effects and factor interactions) were used. The results showed that three of the factors resulted in statistically significant effects on varying numbers of the 13 responses. The Barrier and Fabric factors had the strongest main effects with roughly comparable magnitudes. Foam was statistically significant for fewer of the responses and its overall strength was weaker than for Barrier and Fabric. No statistically significant main effects were identified for Wrap or Thread. Multiple two‐term interactions between factors were identified as being statistically significant. The Barrier*Fabric interaction resulted in the highest number of and strongest statistically significant effects. The existence of two‐term interactions means that it will be necessary to consider their effects in approaches designed to predict the burning behavior of RUF.  相似文献   
3.
《Ceramics International》2021,47(20):28848-28858
The construction of photocatalyst with gradient band structure is guided by the principle of band gap engineering. Rational structural design is advanced and applied to construct a new-typed peculiarly structural and functional carbon-based [TiO2/C]//[Bi2WO6/C] Janus nanofiber modified by g-C3N4 nanosheets heterostructure photocatalyst (denoted as TB-JgHP). The flexible carbon-based [TiO2/C]//[Bi2WO6/C] Janus nanofiber with one side responding to ultraviolet light and the other capturing visible light is fabricated by conjugate electrospinning, and then g-C3N4 nanosheets are uniformly grown in-situ on the surface of the Janus nanofibers by using gas-solid reaction via gasification of urea. The optimized TB-JgHP possesses remarkable hydrogen evolution efficiency (17.48 mmol h−1 g−1) and methylene blue degradation rate (99.2%) under simulated sunlight illumination for 100 min, demonstrating prominent dual-functional characteristics. The enhanced photocatalytic performance benefits from the unique Janus structure as well as the synergistic effects among the triple heterostructures of TiO2 and Bi2WO6, g-C3N4 and TiO2, g-C3N4 and Bi2WO6. The formation of gradient band structure among heterostructures is more conducive to the multi-step separation of photo-induced electron-hole pairs and more effective absorption of light. Further, flexible self-standing carbon-based photocatalysts not only have outstanding electron transport performance, but also are easy to separate from solution with preeminent recyclable stability. Based on a series of characterization techniques, it is further proved that TB-JgHP has higher carrier separation efficiency than the counterpart contrast samples. The formation mechanism of TB-JgHP is proposed, and the construction technique is established. The design philosophy and construction technique presented in this work pave a new avenue for research and development of other heterostructure photocatalysts.  相似文献   
4.
《Ceramics International》2021,47(23):33353-33362
High thermal conductivity Si3N4 ceramics were fabricated using a one-step method consisting of reaction-bonded Si3N4 (RBSN) and post-sintering. The influence of Si content on nitridation rate, β/(α+β) phase rate, thermal conductivity and mechanical properties was investigated in this work. It is of special interest to note that the thermal conductivity showed a tendency to increase first and then decrease with increasing Si content. This experimental result shows that the optimal thermal conductivity and fracture toughness were obtained to be 66 W (m K)-1 and 12.0 MPa m1/2, respectively. As a comparison, the nitridation rate and β/(α+β) phase rate in a static pressure nitriding system, i.e., 97% (MS10), 97% (MS15), 97% (MS20) and 8.3% (MS10), 8.3% (MS15), 8.9% (MS20), respectively, have obvious advantages over those in a flowing nitriding system, i.e., 91% (MS10), 91% (MS15), 93% (MS20) and 3.1% (MS10), 3.3% (MS15), 3.3% (MS20), respectively. Moreover, high lattice integrity of the β-Si3N4 phase was observed, which can effectively confine O atoms into the β-Si3N4 lattice using MgO as a sintering additive. This result indicates that one-step sintering can provide a new route to prepare Si3N4 ceramics with a good combination of thermal conductivity and mechanical properties.  相似文献   
5.
Wire arc additive manufacturing(WAAM)has been investigated to deposit large-scale metal parts due to its high deposition efficiency and low material cost.However,in the process of automatically manufacturing the high-quality metal parts by WAAM,several problems about the heat build-up,the deposit-path optimization,and the stability of the process parameters need to be well addressed.To overcome these issues,a new WAAM method based on the double electrode micro plasma arc welding(DE-MPAW)was designed.The circuit principles of different metal-transfer models in the DE-MPAW deposition process were analyzed theoretically.The effects between the parameters,wire feed rate and torch stand-off distance,in the process of WAAM were investigated experimentally.In addition,a real-time DE-MPAW control system was developed to optimize and stabilize the deposition process by self-adaptively changing the wire feed rate and torch stand-off distance.Finally,a series of tests were performed to evaluate the con-trol system's performance.The results show that the capability against interferences in the process of WAAM has been enhanced by this self-adaptive adjustment system.Further,the deposition paths about the metal part's layer heights in WAAM are simplified.Finally,the appearance of the WAAM-deposited metal layers is also improved with the use of the control system.  相似文献   
6.
The ability to detect gun and gun held in hand or other body parts is a typical human skill. The same problem presents an imperative task for computer vision system. Automatic observer independent detection of hand held gun or gun held in the other body part, whether it is visible or concealed, provides enhance security in vulnerable places and initiates appropriate action there. Compare to the automatic object detection systems, automatic detection of gun has very few successful attempts. In the present scope of this paper, we present an extensive survey on automatic detection of gun and define a taxonomy for this particular detection system. We also describe the inherent difficulties related with this problem. In this survey of published papers, we examine different approaches used in state-of-the-art attempts and compare performances of these approaches. Finally, this paper concludes pointing to the possible research gaps in related fields.  相似文献   
7.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
8.
为了使双鸭山矿区煤炭资源最大程度地被采掘,减少资源浪费,提高矿井效益,延长矿井服务年限及促进矿井安全生产,以双鸭山矿区3个缓倾斜中厚煤层综采工作面为工程背景,对切顶卸压无煤柱开采技术进行深入探索,经过实际的检验证明,在双鸭山矿区缓倾斜中厚煤层中,采用切顶卸压技术进行沿空留巷,技术可行,经济合理,工艺简单,成巷率高。  相似文献   
9.
Chemical graph theory is a branch of mathematics which combines graph theory and chemistry. Chemical reaction network theory is a territory of applied mathematics that endeavors to display the conduct of genuine compound frameworks. It pulled the research community due to its applications in theoretical and organic chemistry since 1960. Additionally, it also increases the interest the mathematicians due to the interesting mathematical structures and problems are involved. The structure of an interconnection network can be represented by a graph. In the network, vertices represent the processor nodes and edges represent the links between the processor nodes. Graph invariants play a vital feature in graph theory and distinguish the structural properties of graphs and networks. In this paper, we determined the newly introduced topological indices namely, first -degree Zagreb index, first -degree Zagreb index, second -degree Zagreb index, -degree Randic index, -degree atom-bond connectivity index, -degree geometric-arithmetic index, -degree harmonic index and -degree sum-connectivity index for honey comb derived network. In the analysis of the quantitative structure property relationships (QSPRs) and the quantitative structureactivity relationships (QSARs), graph invariants are important tools to approximate and predicate the properties of the biological and chemical compounds. Also, we give the numerical and graphical representation of our outcomes.  相似文献   
10.
To investigate the evaluation method of hydrogen compatibility of A286 superalloy in high pressure hydrogen gas, SSRT tests of hydrogen-charged specimens were conducted at ambient temperature at various strain rates. The relative reduction in area (RRA), one of the ductility parameters, was determined. The hydrogen content in the hydrogen-charged specimen was the same as the equilibrium hydrogen content on the specimen surface at 150 °C in 70 MPa hydrogen gas. The strain rate dependence of RRA was smaller than that of RRA obtained in 70 MPa hydrogen gas at 150 °C. All the hydrogen-charged specimens showed slip-plane fractures in the grains in their cores. However, the specimens in 70 MPa hydrogen gas at 150 °C showed fracture surfaces morphology ranging from dimples to quasi-cleavages and intergranular fractures with decreasing strain rate. These dissimilarities are expected to arise from differences in the hydrogen concentration behaviors of the specimens during the deformation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号