首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13960篇
  免费   1758篇
  国内免费   721篇
电工技术   214篇
综合类   773篇
化学工业   3774篇
金属工艺   826篇
机械仪表   242篇
建筑科学   431篇
矿业工程   75篇
能源动力   227篇
轻工业   4287篇
水利工程   58篇
石油天然气   503篇
武器工业   82篇
无线电   1029篇
一般工业技术   1695篇
冶金工业   285篇
原子能技术   101篇
自动化技术   1837篇
  2024年   57篇
  2023年   251篇
  2022年   370篇
  2021年   565篇
  2020年   550篇
  2019年   555篇
  2018年   491篇
  2017年   573篇
  2016年   605篇
  2015年   539篇
  2014年   782篇
  2013年   1000篇
  2012年   962篇
  2011年   1180篇
  2010年   779篇
  2009年   839篇
  2008年   787篇
  2007年   764篇
  2006年   686篇
  2005年   528篇
  2004年   468篇
  2003年   477篇
  2002年   440篇
  2001年   313篇
  2000年   246篇
  1999年   192篇
  1998年   224篇
  1997年   183篇
  1996年   151篇
  1995年   128篇
  1994年   103篇
  1993年   90篇
  1992年   74篇
  1991年   74篇
  1990年   73篇
  1989年   38篇
  1988年   26篇
  1987年   29篇
  1986年   22篇
  1985年   29篇
  1984年   48篇
  1983年   21篇
  1982年   39篇
  1981年   8篇
  1980年   23篇
  1979年   11篇
  1978年   9篇
  1977年   6篇
  1975年   10篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
利用蒸馏分离—气相色谱法技术,建立了同时测定煤焦油中苊、氧芴和芴的分析方法。通过对色谱条件的优化,以甲苯为溶剂,正十二烷为内标物,将煤焦油馏分采用DB-5毛细管柱,对煤焦油中苊、氧芴和芴定量分析。分析结果表明:3种主要成分线性关系良好,相关系数均大于0.9995,加标回收率为95.4%~102.4%,相对标准偏差为2.89%~7.14%。该方法分离效果好,检测结果准确、可靠。  相似文献   
2.
锰基化合物具备高容量、高能量密度和高工作电压等特性,是水系锌离子电池(AZIBs)商业应用过程中的首选正极材料。然而,材料存在的电导率低、锰溶解、静电斥力效应和结构稳定性差等缺点,严重阻碍其大规模应用。采用表面活性剂辅助溶剂热法成功合成了碳纳米管(CNT)包覆ZnMn2O4/Mn2O3(ZMO/MO)复合材料,并探究了CNT包覆量对材料电化学性能和动力学过程的影响。采用X射线衍射和扫描电子显微镜对材料的结构和形貌进行表征。与纯相ZMO/MO相比,经CNT包覆的正极在0.1 A g-1电流密度下具有良好的循环稳定性和更高的倍率性能。并用循环伏安曲线和电化学阻抗探究了电极的动力学特性,两相复合提高了Zn2 扩散速率,CNT的包覆改善了材料的电荷传递。  相似文献   
3.
The study aims to evaluate the technological properties of autochthonous strains (Lactobacillus sakei S15, Lactobacillus plantarum S24, L. plantarum S91, Pediococcus pentosaceus S128b and Staphylococcus carnosus G109) in Turkish dry fermented sausage (sucuk). After 24 h of fermentaPtion, all lactic acid bacteria strains reduced the pH to below 5.0, while the pH in the control group was above 5.3. The number of lactic acid bacteria strains reached 108–109 cfu g−1 during fermentation. Staphylococcus carnosus G109 remained at the inoculation level of 106 cfu g−1 during ripening. Lactobacillus sakei S15 as mono-culture showed higher TBARS values compared to other strains. The control group had the lowest L* value and autochthonous strains caused no significant difference for a* value. According to principal component analysis results, most volatile compounds were positively correlated with the group containing only L. sakei S15.  相似文献   
4.
Ni–Co/Mg(Al)O alloy catalysts with different Co/Ni molar ratios have been prepared from Ni- and Co-substituted Mg–Al hydrotalcite-like compounds (HTlcs) as precursors and tested for dry reforming of methane. The XRD characterization shows that Ni–Co–Mg–Al HTlcs are decomposed by calcination into Mg(Ni,Co,Al)O solid solution, and by reduction finely dispersed alloy particles are formed. H2-TPR indicates a strong interaction between nickel/cobalt oxides and magnesia, and the presence of cobalt in Mg(Ni,Co,Al)O enhances the metal-support interaction. STEM-EDX analysis reveals that nickel and cobalt cations are homogeneously distributed in the HTlcs precursor and in the derived solid solution, and by reduction the resulting Ni–Co alloy particles are composition-uniform. The Ni–Co/Mg(Al)O alloy catalysts exhibit relatively high activity and stability at severe conditions, i.e., a medium temperature of 600 °C and a high space velocity of 120000 mL g?1 h?1. In comparison to monometallic Ni catalyst, Ni–Co alloying effectively inhibits methane decomposition and coke deposition, leading to a marked enhancement of catalytic stability. From CO2-TPD and TPSR, it is suggested that alloying Ni with Co favors the CO2 adsorption/activation and promotes the elimination of carbon species, thus improving the coke resistance. Furthermore, a high and stable activity with low coking is demonstrated at 750 °C. The hydrotalcite-derived Ni–Co/Mg(Al)O catalysts show better catalytic performance than many of the reported Ni–Co catalysts, which can be attributed to the formation of Ni–Co alloy with uniform composition, proper size, and strong metal-support interaction as well as the presence of basic Mg(Al)O as support.  相似文献   
5.
Sweet pickled mango named Ma-Muang Bao Chae-Im is a traditional preserved mango from Hat Yai, Thailand. This study investigated (I) volatile and non-volatile compound profiles of commercial Ma-Muang Bao Chae-Im and (II) their relationship to consumer preference. Untargeted metabolomics profiling was performed by gas chromatography-mass quadrupole-time of flight analysis. There were 117 volatile and 44 non-volatile compounds annotated in six commercial brands of Ma-Muang Bao Chae-Im. Furthermore, 46 volatile and 19 non-volatile compounds’ discriminant markers were found by Partial least square discriminant analysis. Among those markers, sorbic and benzoic acid were observed in several brands; moreover, the combination of both compounds altered the volatile profile, especially the ester group. Partial least square regression revealed that overall consumer liking is correlated to 1-heptanol; 1-octanol; acetoin; acetic acid, 2-phenylethyl ester; D-manitol; terpenes and terpenoids, while firmness to sucrose and L-(-)-sorbofuranose. On the other hand, most ester compounds were not related to consumer preference.  相似文献   
6.
To investigate the effect of cooking temperature (55, 65, 75, 85 and 95 °C) on texture and flavour binding of braised sauce porcine skin (BSPS), sensory acceptance, microstructure and flavour-binding capacity were investigated during the processing of BSPS. Samples cooked at 85 and 95 °C showed better texture and aroma scores. Hardness and chewiness of BSPS were obviously improved at 85 and 95 °C than control group. Collagen structure was significantly destroyed over 85 °C. The porcine skin collagen heated at 85 and 95 °C showed relatively higher flavour-binding capacity than other samples. The improvement of texture of BSPS was mainly attributed to the degradation of collagen. Higher aroma scores of BSPS were related to intense binding abilities with aroma compounds at 85 and 95 °C. Cooking at 85 or 95 °C could be an optimal cooking temperature for BSPS.  相似文献   
7.
Hotel housekeepers represent a large, low-income, predominantly minority, and high-risk workforce. Little is known about their exposure to chemicals, including volatile organic compounds (VOCs). This study evaluates VOC exposures of housekeepers, sources and factors affecting VOC levels, and provides preliminary estimates of VOC-related health risks. We utilized indoor and personal sampling at two hotels, assessed ventilation, and characterized the VOC composition of cleaning agents. Personal sampling of hotel staff showed a total target VOC concentration of 57 ± 36 µg/m3 (mean ± SD), about twice that of indoor samples. VOCs of greatest health significance included chloroform and formaldehyde. Several workers had exposure to alkanes that could cause non-cancer effects. VOC levels were negatively correlated with estimated air change rates. The composition and concentrations of the tested products and air samples helped identify possible emission sources, which included building sources (for formaldehyde), disinfection by-products in the laundry room, and cleaning products. VOC levels and the derived health risks in this study were at the lower range found in the US buildings. The excess lifetime cancer risk (average of 4.1 × 10−5) still indicates a need to lower exposure by reducing or removing toxic constituents, especially formaldehyde, or by increasing ventilation rates.  相似文献   
8.
It is of importance to convert glycerol, the primary by-product from biodiesel manufacturing, to various valuable C_3 chemicals, such as acrolein via dehydration, lactic acid, 1,3-dihydroxyacetone via oxidation,and 1,3-propanediol, allyl alcohol via hydrogenolysis. As compared to petroleum-based resources, C_3 chemicals from glycerol provide a benign, sustainable and atomically economic feature. Extensive heterogeneous catalysts have been designed, prepared and tested for these transformations. In recent five years,great progress, including high yields to target products over appropriate catalysts, insight into reaction mechanism and network, has been achieved. The present review systematically covers recent research progress on sustainable C_3 chemical production from catalytic glycerol transformations. We hope that it will benefit future research on transformations of glycerol as well as other polyols.  相似文献   
9.
Manganese oxides of different crystalline structures: α-MnO2, δ-MnO2, α,γ-MnO2 and Mn2O3; were treated with the organic compounds picolinic acid, ethylenediamine and pyridine; and were applied as catalysts in the chemical water oxidation reaction using Ce(IV) ammonium nitrate as sacrificial oxidant. The treatment led to modifications in the oxides properties, such as reduction of the particle size, increase of surface area and partial reduction of Mn4+ to Mn3+ for the Mn(IV) oxides, or of Mn3+ to Mn2+ for Mn2O3, because of favored interactions of the organic molecules with the lattice planes with higher d spacing. Oxygen evolution reaction (OER) tests showed the superior catalytic activity of the treated Mn(IV) oxides, for instance α,γ-MnO2-en presented TOF five times higher than pure α,γ-MnO2. The increase in surface area as well as the higher Mn3+ content caused by the treatment of the Mn(IV) oxides were correlated with the improvement in the OER catalytic activity.  相似文献   
10.
Enriching the micronutrients, selenium (Se) and lithium (Li), in grapes to improve their nutraceutical properties were implemented by foliar application of organic fertiliser rich in Se and Li onto five grape cultivars. The effects of this biofortification on vine vigour, fruit quality, overall micronutrients and phenolic compounds also were investigated. Agronomic biofortification was found greatly increased the Se and Li content in the whole grape by multiple times, meanwhile it did not significantly affect the vine vigour and fruit quality of grapes. However, the biofortification did impact the Ionome (including all the mineral nutrients and trace elements) and phenolic compounds in grapes and this varied among cultivars. This study demonstrated foliar spray of organic Se/Li fertiliser was a very effective strategy to biofortify these micronutrients in grape berries, particularly in the skin, and therefore might be a promising strategy to increase the consumption and awareness of these grapes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号