首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   47篇
  国内免费   14篇
电工技术   1篇
综合类   3篇
化学工业   64篇
金属工艺   11篇
能源动力   29篇
轻工业   2篇
石油天然气   4篇
无线电   28篇
一般工业技术   93篇
冶金工业   2篇
自动化技术   1篇
  2023年   14篇
  2022年   20篇
  2021年   23篇
  2020年   19篇
  2019年   22篇
  2018年   16篇
  2017年   18篇
  2016年   26篇
  2015年   12篇
  2014年   18篇
  2013年   5篇
  2012年   12篇
  2011年   9篇
  2010年   7篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
1.
A novel low-temperature sealing method was developed to seal solid oxide fuel cells. The 3D Ni nanosheet array was pre-fabricated on faying surfaces of Crofer22APU interconnect and NiO-YSZ anode-support. Then it was covered with Au film without changing its morphology. This special nanostructure improved sintering efficiency between Ag nanoparticles and substrates. A dense joint was obtained at the low-temperature between 250 °C–300 °C. This method effectively avoided the oxidation of interconnect during sealing. When joints were sealed at 300 °C, the shear strength reached 16 MPa. The fracture was mainly located in the central Ag layer, presenting a significant plastic deformation. Due to the effective protection of Ni layer, joints also possessed excellent oxidation resistance in oxidizing atmosphere at 800 °C for 400 h. After high-temperature oxidation, the shear strength was increased to 23 MPa, revealing an increasement of 43.8% compared with the as-sealed condition (16 MPa). This sealing method has great potential in sealing solid oxide fuel cells. It also can be extended to seal other energy-conversion devices.  相似文献   
2.
SnO2 nanosheets were developed to detect nonanal gas in the order of ppb which was a marker of lung cancer. The nanosheets showed higher resistance change in nonanal gas than that in carbon monoxide (CO), nitrogen dioxide (NO2), acetone (CH3COCH3), hydrogen (H2), ethanol (C2H6O), ammonia (NH3), hydrogen sulfide (H2S), formaldehyde (HCHO), acetaldehyde (CH3CHO), or butanal (C4H8O). Crystal surfaces of the nanosheets would be effective for adsorption of nonanal molecules. Furthermore, it was shown that resistance changed with an increase in carbon number in aldehyde. The nanosheets had molecular selectivity for a series of aldehyde molecules. Molecular recognition of the nanosheets gave us a great advantage to detect nonanal gas which was produced by lung cancer.  相似文献   
3.
《Ceramics International》2021,47(23):33405-33412
In this study, SnO2@MnO2@graphite (SMG) anode material is prepared via a facile ball-milling approach combined with hydrothermal treatment. SnO2 and MnO2 nanoparticles are evenly dispersed on numerous sheet-like graphite. MnO2 can not only play a catalytic role for facilitating the conversion reaction of Sn/Li2O to SnO2, but also as a barrier to impede the coarsening of Sn in the composite. Meanwhile, graphite nanosheets could serve as an ideal volume expansion buffer and good electron conductor. Consequently, the SMG anode delivers superior reversible capacity of 1048.5 mAhg−1, ideal rate capability of 522.2 mAhg−1 at 5.0 A g-1 and stable long-life cyclic performance of 814.8 mAhg−1 at 1.0 A g-1 after 1000 cycles. This result indicates that the incorporation of MnO2, graphite nanosheet and SnO2 have a great potential in enhancing the performance of SnO2-based anode for battery applications.  相似文献   
4.
Porous Ni2P nanoflower supported on nickel foam (Ni2P@Ni foam) electrodes are synthesized via a simple hydrothermal growth strategy accompanied with further phosphating treatment. The prepared electrodes are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). Electro-catalytic performances towards urea electro-oxidation are tested by cyclic voltammetry (CV), chronoamperometry (CA) coupled with electrochemical impedance spectroscopy (EIS). By phosphating Ni(OH)2 precursor, the final obtained Ni2P@Ni foam electrode presents a porous Ni2P nanoflower structure within abundant porosity, and so exposes a large amount of electro-catalytic active sites and electronic transmission channels to accelerate the interfacial reaction. Compared with Ni(OH)2@Ni foam precursor, the Ni2P@Ni foam catalyst exhibits more excellent electro-catalytic activity as well as lower onset oxidation potential. Remarkably, the Ni2P@Ni foam catalyst reaches a peak current density of 750 mA cm?2 with an onset oxidation potential of 0.24 V (vs. Ag/AgCl) accompanied by an excellent stability in 0.60 M urea with 5.00 M KOH solutions. Benefiting from the unique porous nanosheet structure, the as-synthesized Ni2P@Ni foam catalyst performs a highly enhanced catalytic behavior for alkaline urea electro-oxidation, indicating that the material can be hopefully applied in direct urea fuel cells.  相似文献   
5.
In this paper, it was demonstrated that Na2O can react with CO to produce carbon nanofibers at 500 °C and carbon nanosheets at 550 °C. Furthermore, the nanosheets exhibited excellent performance as a counter electrode for a dye‐sensitized solar cell (DSSC), leading to a high power conversion efficiency of 7.57%. The efficiency is larger than that (4.72%) of a DSSC with the carbon nanofiber counter electrode and even comparable with that of an expensive Pt‐based DSSC. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
《Ceramics International》2020,46(4):4864-4869
High quality single-crystal zirconia nanosheets were successfully prepared via molten salt method, using solvothermally synthesized product as precursor. The effects of heat treatment temperature and soaking time on the phase composition and morphology of samples were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, Thermal analyzer, Raman spectrometer, Field-emission scanning electron microscope and Transmission electron microscope. The results show that zirconia nanosheets with a thickness of 60–80 nm and a width-thickness ratio up to 13 could be obtained by using NaCl and Na3PO4 as composite salts at 900 °C for 5 h. The precursors containing Zr–OH and Zr–O bonds have relatively high activity, which is beneficial to crystal growth. In addition, the as-prepared nanosheets with exposed (001) plane are monoclinic-structured and show no distinct defect. The growth behavior of particles during dissolution-recrystallization process is analogous to self-focusing mechanism. The preparation method can be extended to wet-chemical synthesis of other nanomaterials.  相似文献   
7.
目的研究剥离的碳化钛(d-Ti3C2Tx)纳米片的吸波性能。方法利用HCl/LiF刻蚀,通过高速离心的方法得到d-Ti3C2Tx纳米片。利用X射线衍射仪(XRD)分析d-Ti3C2Tx的物相组成。用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对d-Ti3C2Tx进行形貌分析。利用原子力显微镜(AFM)测量了d-Ti3C2Tx纳米片的厚度。利用矢量网络分析仪(VNA)测试了d-Ti3C2Tx纳米片与石蜡复合材料X波段的电磁参数。利用Cole-Cole图分析了复合材料的损耗来源,并通过电磁参数计算分析了d-Ti3C2Tx的吸波性能。结果d-Ti3C2Tx纳米片与石蜡复合材料的介电实部/虚部随着d-Ti3C2Tx浓度的增加而增大,极化的增强和电导网络的扩大是导致复合材料介电实部/虚部增加的主要原因。Cole-Cole图分析表明,复合材料中存在多种类型的极化,这分别是由缺陷、官能团和界面等引起的多重弛豫极化。吸波性能分析表明,通过改变d-Ti3C2Tx浓度,可以调控复合材料的吸波性能。当填充量达到15%时,吸波性能最佳。其在厚度为4 mm下最小反射损耗为−20.1 dB,相应的微波吸收带宽(<‒10 dB)为1.9 GHz。结论d-Ti3C2Tx/石蜡复合材料表现了优异的微波吸收性能,且通过改变d-Ti3C2Tx浓度,可以调控d-Ti3C2Tx复合材料的微波吸收性能。  相似文献   
8.
In this study, first-principles calculations were performed to investigate the catalytic effect of NiN4-G on the dehydrogenation of MgH2. Side-on MgH2 can be adsorbed stably on the NiN4-G monolayer and is preferentially adsorbed on the NiN4 site compared with the graphene site. The hydrogen desorption process, in which MgH2 dissociated to the Mg atom on the NiN4 site or graphene site and an H2 molecule in the vacuum, should overcome lower barriers than pure MgH2. This is because the corresponding Mg–H bond is weakened owing to the electron transfer between the Mg atom and the substrate. The hydrogen desorption enthalpies of the (MgH2)5 cluster on the NiN4 active and graphene sites are significantly smaller (0.11 eV and 1.50 eV, respectively) when H2+H2 is released from the cluster compared with those of the undoped MgH2 cluster (2.48 eV). Therefore, the NiN4-G monolayer can provide the double effect of the NiN4 active and graphene sites on improving the dehydrogenation performance of MgH2.  相似文献   
9.
The state-of-the-art density functional theory (DFT) is employed to study the catalytic activity of arsenene for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). We have included dispersion correction to get accurate adsorption energy on the individual catalytic surface (top site). Using binding energy calculation, arsenene is shown to be a potential candidate for HER. Here we investigate the stability and electronic properties of the honeycomb structure of the arsenene system using first-principles calculation to find the effect of different dopants on the fundamental band gap, which is one of the primary parameters in the photocatalytic water splitting. Further, we sieved the dopant for better HER catalytic activity by substituting one of the arsenene (As) atoms by B, N, O, Ge, Ga and Se atoms to make arsenene a better candidate for HER. Our studies depict that HER activity is increased by 82% for O-doped arsenene and OER activity by 87% for B-doped arsenene as compared to pristine arsenene.  相似文献   
10.
In this study, Co3O4 nanosheets were synthesized through hydrothermal method using cobalt nitrate hexahydrate. X-ray diffraction, diffuse reflectance spectra, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy were applied to investigate the properties of as-synthesized samples. Ultimately, the electrochemical and photoelectrochemical properties were evaluated by Mott–Schottky analysis and measuring photoconversion efficiency of Co3O4 nanosheets. The results indicated that Co3O4 nanosheets exhibited a maximum efficiency of 0.92% for water electrolysis under simulated 1.5 global sunlight air mass, which further suggests the excellent potential of Co3O4 nanosheets for application in hydrogen generation through photocatalytic water splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号