首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   601篇
  免费   71篇
  国内免费   66篇
电工技术   1篇
综合类   27篇
化学工业   64篇
金属工艺   340篇
机械仪表   34篇
建筑科学   3篇
矿业工程   5篇
能源动力   69篇
水利工程   1篇
石油天然气   32篇
武器工业   7篇
无线电   17篇
一般工业技术   110篇
冶金工业   23篇
原子能技术   1篇
自动化技术   4篇
  2024年   3篇
  2023年   38篇
  2022年   42篇
  2021年   48篇
  2020年   35篇
  2019年   29篇
  2018年   41篇
  2017年   28篇
  2016年   16篇
  2015年   20篇
  2014年   27篇
  2013年   49篇
  2012年   55篇
  2011年   40篇
  2010年   30篇
  2009年   40篇
  2008年   34篇
  2007年   26篇
  2006年   40篇
  2005年   20篇
  2004年   18篇
  2003年   15篇
  2002年   10篇
  2001年   10篇
  2000年   5篇
  1999年   8篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有738条查询结果,搜索用时 62 毫秒
1.
In this study, a kind of Ni-based superalloy specially designed for additive manufacturing (AM) was investigated. Thermo-Calc simulation and differential scanning calorimetry (DSC) analysis were used to determine phases and their transformation temperature. Experimental specimens were prepared by laser metal deposition (LMD) and traditional casting method. Microstructure, phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM), X-ray diffraction (XRD) and tensile tests. The results show that this alloy contains two basic phases, γ/γ', in addition to these phases, at least two secondary phases may be present, such as MC carbides and Laves phases. Furthermore, the as-deposited alloy has finer dendrite, its mean primary dendrite arm space (PDAS) is about 30-45 μm, and the average size of γ' particles is 100-150 nm. However, the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500 μm with secondary and even third dendrite arms. Correspondingly, the alloy displays different tensile behavior with different processing methods, and the as-deposited specimen shows better ultimate tensile stress (1,085.7±51.7 MPa), yield stress (697±19.5 MPa) and elongation (25.8%±2.2%) than that of the as-cast specimen. The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites, γ', and Laves phase, and the segregation of elements, etc. Such important information would be helpful for alloy application as well as new alloy development.  相似文献   
2.
The uniform refinement mechanisms and methods of deformed mixed and coarse grains inside a solution-treatment Ni-based superalloy during two-stage annealing treatment have been investigated.The two-stage heat treatment experiments include an aging annealing treatment(AT)and a subsequent recrystallization annealing treatment(RT).The object of AT is to precipitate some δ phases and consume part of storage energy to inhibit the grain growth during RT,while the RT is to refine mixed and coarse grains by recrystallization.It can be found that the recrystallization grains will quickly grow up to a large size when the AT time is too low or the RT temperature is too high,while the deformed coarse grains cannot be eliminated when the AT time is too long or the RT temperature is too low.In addition,the mixed microstructure composed of some abnormal coarse recrystallization grains(ACRGs)and a large number of fine grains can be observed in the annealed specimen when the AT time is 3 h and RT tem-perature is 980℃.The phenomenon attributes to the uneven distribution of δ phase resulted from the heterogeneous deformation energy when the AT time is too short.In the regions with a large number of δ phases,the recrystallization nucleation rate is promoted and the growth of grains is limited,which results in fine grains.However,in the regions with few δ phases,the recrystallization grains around grain boundaries can easily grow up,and the new recrystallization nucleus is difficult to form inside grain,which leads to ACRGs.Thus,in order to obtain uniform and fine annealed microstructure,it is a prereq-uisite to precipitate even-distributed δ phase by choosing a suitable AT time,such as 12 h.Moreover,a relative high RT temperature is also needed to promote the recrystallization nucleation around δ phase.The optimal annealing parameters range for uniformly refining mixed crystal can be summarized as:900℃×12 h+990℃×(40-60 min)and 900℃×12 h+1000℃×(10-15 min).  相似文献   
3.
针对镍基高温合金因加工硬化严重成形时极易产生破裂和起皱等典型缺陷的问题,以锥筒形壳体类零件为对象,提出了一种由锥形预制坯经过真空固溶处理后拉深旋压成形锥筒形件的方法,并对其成形机理进行了研究。基于Abaqus/Explicit平台,建立了锥筒形件拉深旋压有限元模型,分析了成形过程中的瞬态等效应力、等效塑性应变、切向应力、壁厚及三向应变分布规律。结果表明:在旋压成形过程中,最大瞬态等效应力位于旋轮接触区及附近区域、最大瞬态等效塑性应变位于坯料口部;瞬态切向压应力最大值位于旋轮接触区,而瞬态切向拉应力最大值位于旋轮接触区附近的两侧区域。筒形段中部壁厚减薄,而坯料口部壁厚增厚。旋压成形试验表明,锥形预制坯经拉深旋压后可获得壁厚均匀的锥筒形件。  相似文献   
4.
Hierarchical-Beta zeolites have been hydrothermally synthesized by adding a new gemini organic surfactant. The used gemini surfactant play the role of a “pore-forming agents” on the mesoscale, on the same time, providing alkaline environment for the system. With this hierarchical Beta zeolite as the core support, we successfully prepared a shell layer of Ni-containing (22 wt%) petal-like core-shell-like catalyst and applied it to bioethanol steam reforming. At the reaction temperature of 350 °C–550 °C, the conversion rate of ethanol and the selectivity of hydrogen were always above 85% and 70%. After reaction of 100 h on stream at 400 °C, there were not obvious inactivation could be observed on NiNPs/OH-MBeta catalyst.  相似文献   
5.
Anion exchange membrane water electrolysis (AEMWE) has acquired substantial consideration as a cost-effective hydrogen production technology. The anion ionomer content in the catalyst layers during hydrogen and oxygen evolution reaction (HER and OER) is of ultimate significance. Herein, an in-situ half-cell analysis with reference electrodes was carried out for simultaneous potential measurements and identification of the influence of the anion exchange ionomer (AEI) content on anode and cathode performance. The measured half-cell potentials proved the influence of AEI content on the catalytic activity of HER and OER, which was supported by the rotating disk electrode (RDE) measurements. Cathode overpotential of Ni/C was not negligible and more affected by the AEI content than anode with the optimized AEI content of 10 wt% while NiO anode OER overpotential was independent of the AEI content. For the same AEI content, PGM catalysts showed higher electroactivity than Ni-based catalysts for HER and OER and the cathode catalyst's intrinsic activity is of high importance in the AEM electrolysis operation. Post-mortem analysis by SEM mapping of both AEI and catalyst distributions on the electrode surface showed the effect of AEI loading on the catalyst morphology, which could be related to the electrode performance.  相似文献   
6.
Ethanol steam reforming (ESR) is one of the potential processes to convert ethanol into valuable products. Hydrogen produced from ESR is considered as green energy for the future and can be an excellent alternative to fossil fuels with the aim of mitigating the greenhouse gas effect. The ESR process has been well studied, using transition metals as catalysts coupled with both acidic and basic oxides as supports. Among various reported transition metals, Ni is an inexpensive material with activity comparable to that of noble metals, showing promising ethanol conversion and hydrogen yields. Additionally, different promoters and supports were utilized to enhance the hydrogen yield and the catalyst stability. This review summarizes and discusses the influences of the supports and promoters of Ni-based catalysts on the ESR process.  相似文献   
7.
TiC含量对TC4合金激光熔覆层组织和性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用激光熔覆工艺在TC4钛合金基体表面制备了添加不同质量分数(0%、2%、4%、6%)TiC的Ni60A复合熔覆层,通过光学显微镜、显微硬度计、X射线衍射仪、摩擦磨损机分析了不同TiC含量对熔覆层组织及性能的影响。结果表明:未添加TiC的熔覆层组织以树枝晶为主,添加TiC后出现了花瓣状物相;XRD分析发现熔覆层中出现了AlCCr2、Al0.24B0.01Ni0.75等硬质增强相,这些能够显著提高熔覆层的硬度。显微硬度及摩擦磨损试验结果表明,添加TiC的熔覆层平均硬度均较基体硬度有大幅提高,摩擦因数显著降低,且随TiC含量的增加,熔覆层硬度先增加后降低,摩擦因数先降低后增加,4%TiC熔覆层的硬度最大,相比基体提高了213.3%,摩擦因数最小,为0.309 774。  相似文献   
8.
The performance of Ni-based catalyst supported on γ-Al2O3 for glycerol dry reforming (GDR) reaction was investigated in the current study. γ-Al2O3 was prepared from aluminum dross (AD) before use as catalyst support. Al2O3 was extracted using three different techniques assisted with ultrasonication: acid leaching with ammonia precipitation, acid leaching with re-precipitation of HCl, and alkaline leaching with ammonium hydrogen carbonate. The results show that extracted γ-Al2O3 3 (EGA3) with the highest purity and the surface area of 267.5 m2 g−1 was produced from acid leaching with ammonia precipitation technique at a calcination temperature of 800 °C. A series of Ni/EGA3 (5%, 10%, 15% and 20%) catalysts were tested and it was found that the catalytic activity was increased in the order of 5%Ni/EGA3 < 10%Ni/EGA3 < 20%Ni/EGA3 < 15%Ni/EGA3. 15%Ni/EGA3 catalyst has the highest catalytic activity due to the excellent distribution of Ni on the EGA support, high specific surface area of the support and high catalyst's basicity. In addition, the strong Ni-EGA3 interaction of the 15%Ni/EGA3 catalyst suppressed the carbon formation with the catalyst having the lowest carbon deposition value of 25.51% during the GDR reaction carried out for 8 h. Studies on the GDR reaction catalytic activities revealed that 15%Ni/EGA3 achieved the maximum catalytic activity with 56.7% glycerol conversion, 44.7% H2 yield, and 40.6% CO yield at 800 °C and CGR of 1:1. The H2:CO ratio obtained in this study was approximately 1.2–1.5 throughout the reaction, depicting a relatively rich H2 syngas product. Overall, the strong interaction between Ni and EGA3 ensured stable Ni particles that can mitigate carbon deposits, thereby enhancing the catalytic activity.  相似文献   
9.
The influence of brazing temperature and brazing time on the microstructure and shear strength of γ-TiAl/GH536 joints brazed with Ti−Zr−Cu−Ni−Fe−Co−Mo filler was investigated using SEM, EDS, XRD and universal testing machine. Results show that all the brazed joints mainly consist of four reaction layers regardless of the brazing temperature and brazing time. The thickness of the brazed seam and the average shear strength of the joint increase firstly and then decrease with brazing temperature in the range of 1090−1170 °C and brazing time varying from 0 to 20 min. The maximum shear strength of 262 MPa is obtained at 1150 °C for 10 min. The brittle Al3NiTi2 and TiNi3 intermetallics are the main controlling factors for the crack generation and deterioration of joint strength. The fracture surface is characterized as typical cleavage fracture and it mainly consists of massive brittle Al3NiTi2 intermetallics.  相似文献   
10.
The rational design and preparation of bifunctional electrocatalysts with pleasant oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance is crucial for extensive commercial applications of rechargeable Zn–air batteries (ZABs). Herein, we report a simple method to obtain multi-metal (Fe, Ni, Zn) embedded in N-doped carbon sheets entangled with carbon nanotubes (CNTs) as superior oxygen electrocatalysts (FeNi-NCS-2). The resultant FeNi-NCS-2 exhibits an impressive electrochemical performance, providing a reversible oxygen overpotential as low as 0.758 V. The ZAB with FeNi-NCS-2 as the air cathode shows a promising capacity of 639.71 mAh g?1 at 20 mA cm?2, a power density of 109.8 mW cm?2 and cycling stability of over 130 cycles at 10 mA cm?2 with an energy efficiency of about 55%, superior to the ZAB based on Pt/C–IrO2. The satisfactory electrocatalytic performance is mainly due to the Fe, Ni-based nanoparticles protected by graphitic carbon layers, hierarchical porous lamellar structures that promote the accessibility between the active centers and the electrolyte as well as self-growing tangled carbon nanotubes that provide fast transmission channels. This study presents a facile way for the synthesis of highly efficient ORR/OER bifunctional electrocatalysts for high-performance rechargeable ZABs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号