首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20401篇
  免费   1715篇
  国内免费   1237篇
电工技术   582篇
综合类   1551篇
化学工业   4889篇
金属工艺   2442篇
机械仪表   1090篇
建筑科学   2144篇
矿业工程   965篇
能源动力   777篇
轻工业   1294篇
水利工程   762篇
石油天然气   1002篇
武器工业   227篇
无线电   813篇
一般工业技术   3093篇
冶金工业   1006篇
原子能技术   211篇
自动化技术   505篇
  2024年   27篇
  2023年   656篇
  2022年   667篇
  2021年   591篇
  2020年   662篇
  2019年   757篇
  2018年   404篇
  2017年   611篇
  2016年   577篇
  2015年   703篇
  2014年   1346篇
  2013年   1080篇
  2012年   1167篇
  2011年   1186篇
  2010年   1065篇
  2009年   1164篇
  2008年   1552篇
  2007年   1311篇
  2006年   1110篇
  2005年   1099篇
  2004年   965篇
  2003年   754篇
  2002年   594篇
  2001年   558篇
  2000年   460篇
  1999年   343篇
  1998年   359篇
  1997年   243篇
  1996年   258篇
  1995年   251篇
  1994年   187篇
  1993年   137篇
  1992年   123篇
  1991年   92篇
  1990年   119篇
  1989年   111篇
  1988年   15篇
  1987年   8篇
  1986年   6篇
  1985年   5篇
  1984年   10篇
  1982年   7篇
  1981年   4篇
  1980年   1篇
  1979年   5篇
  1963年   1篇
  1960年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
微硅粉是硅铁和工业硅冶炼的副产物,具有神奇的物理化学性能被广泛应用于混泥土、特种水泥、耐火材料、冶金球团、陶瓷材料、化工等行业.本文针对目前国内回收的微硅粉SiO2含量低、杂质含量高、颗粒易团聚,分散性差,难以与其他基料结合等问题,分析了微硅粉的理化性能,综述了微硅粉理化性能改善研究现状,指出了目前微硅粉性能改善存在的问题及发展方向.  相似文献   
2.
构建下转换荧光-适配体免疫层析试纸条用于食品中黄曲霉毒素B1(aflatoxin B1,AFB1)的快速高效检测。体系中AFB1存在会减弱下转换荧光-适配体纳米颗粒层析至T线时与AFB1半抗原的结合能力,从而导致下转换荧光信号衰减,进而实现对AFB1的高效检测。该方法在AFB1质量浓度1~40 ng/mL范围内与荧光信号呈良好的线性关系,线性相关系数为0.994,检测限为0.287 ng/mL。该方法利用稀土掺杂荧光纳米颗粒的长寿命发光及近红外荧光特性,有效降低了生物背景荧光干扰并提高了检测体系的特异性。该方法在AFB1的快速高灵敏检测中具有良好的应用前景。  相似文献   
3.
通过一步热聚合法制备纳米碳颗粒/氮化碳复合材料,利用XRD、FTIR、TEM、DRS、PL等手段对纳米碳颗粒/氮化碳进行了系统表征,并考察其光催化降解罗丹明B的光催化性能。结果表明,纳米碳颗粒的负载可以显著改善复合材料的可见光吸收能力及光生电子/空穴的分离效率,当加入纳米碳颗粒的质量为10 mg时,所得到的纳米碳颗粒/氮化碳2在20 min内对罗丹明B的降解率可以达到96.5%,明显优于纯氮化碳材料。此外,纳米碳颗粒/氮化碳复合材料还表现出良好的稳定性。  相似文献   
4.
采用复合溶胶–凝胶法结合后续热处理,制备了具有包埋结构的氧化亚硅/碳(SiOx/C)复合负极材料。扫描电子显微镜分析结果表明:氧化亚硅纳米颗粒嵌入在无定形碳中。电化学性能测试表明:SiOx/C复合材料具有较高的比容量、优异的循环稳定性和倍率性能。材料在0.1 A/g的电流密度下100次循环后的可逆比容量为710 m A·h/g,容量几乎无衰减;在1.6 A/g的电流密度下,可逆比容量为380 m A·h/g。优异的电化学性能是由于材料的包埋结构能有效地缓冲SiOx充放电过程中的体积膨胀,保证材料的结构完整性和电化学循环稳定性。  相似文献   
5.
白水泥作为一种特种水泥,水泥成品要求比表面积高,80μm、45μm筛余细度控制严格。改造前,水泥粗颗粒多,细度不易控制。将原系统中O-Sepa N-1500水平涡流选粉机更改为SLK1500型空气打散涡流选粉机,改善了物料打散效果,提高了选粉机选粉效率和台时产量,解决了粗颗粒窜入成品影响质量的问题。  相似文献   
6.
热膜式气体流量传感器在实际使用过程中,其芯片表面很容易被微小颗粒污染,使精度达不到工作要求.试验研究发现,传感器通电工作时,芯片表面电场力是造成污染物颗粒吸附堆积的主要因素.因此,污染物颗粒带电量的大小对芯片表面颗粒的堆积有着直接影响.文中采用Mastersizer 2000激光粒度分析仪和密立根油滴仪联合测量了颗粒群的平均粒径和平均带电量.激光粒度分析仪所测污染物颗粒的平均粒径为3.311 μm,根据此平均粒径值,密立根油滴仪所测3.2~3.4 μm范围内的颗粒所带平均带电量为6.4×10-17 C,此带电量即为整个颗粒群的平均带电量.  相似文献   
7.
在NiTi系合金大家族中,等原子比的NiTi合金具有形状记忆效应和超弹性。相比于等原子比NiTi合金,60NiTi合金不会发生热弹性马氏体相变,不具有形状记忆效应和超弹性,但是它在硬度、耐腐蚀性和弹性性能等方面具有出众的潜能,在航天领域上展现了良好的应用前景。固溶态60NiTi合金同时具备结构稳定性、超强的耐腐蚀性、出色的耐磨性,已成为航天轴承候选新材料。  相似文献   
8.
依据经典成核理论和超临界领域中的结晶动力学相关模型,分析影响成核速率的主要因素及其规律。研究共溶剂辅助超临界CO2溶解无机盐,在SBA-15介孔材料表面沉积实验的结果,发现伴随初始阶段的泄压速率逐步提升(0.05~18 MPa/min,20~14 MPa),载体所负载的纳米颗粒的粒径逐渐减小至1.5 nm左右,与典型的晶核尺寸1 nm相接近,而担载量却出现逐渐增加的趋势。晶体的临界成核半径取为0.5 nm,通过Türk模型和Debenedetti模型计算超临界流体快速膨胀(RESS)工艺其喷嘴内的成核速率,与超临界反溶剂(SAS)群体平衡模型(PBM)的边界条件即SAS过程的初始成核速率相比较,三者的成核速率相接近,且利用快速泄压方法的沉积实验结果与按Cu担载量所估算的成核速率相接近。分析在沉积反应后的泄压阶段,超临界条件下的CO2的脱附作用,可能成为吸附于载体表面的前驱物离子结晶的诱导因素。并且CO2瞬时脱附量能够调控负载型纳米颗粒的成核速率,同时控制复合材料的金属担载量。为研究微观尺度下SAS过程的实现提供了实验与理论基础。  相似文献   
9.
研究新型离子液体(ionic liquid,IL)-1-烯丙基-3-乙烯基咪唑醋酸盐对普通玉米淀粉溶解性能的影响。采用偏光显微镜(polarized light microscopy,PLM)、X-射线衍射仪(X-ray diffraction,XRD)、差示扫描量热仪(differential scanning calorimetry,DSC)、扫描电子显微镜(scanning electron microscope,SEM)等淀粉表征手段,揭示水和离子液体混合溶液对玉米淀粉溶解的影响。结果发现,通过偏光显微镜和扫描电子显微镜可以观察到在水和离子液体的摩尔比为4∶1时玉米淀粉的颗粒的“马耳他”十字消失,颗粒结构明显变形,从X-射线衍射结果可以看出水和离子液体比为4∶1(摩尔比)处理的玉米淀粉X-射线的衍射峰的峰强度明显减弱,且淀粉的典型A型晶体的特征峰消失,表明淀粉晶体结构遭到严重破坏。通过DSC的结果可以看出,静置60 min后,水∶离子液体为4∶1(摩尔比)处理的淀粉DSC峰没有吸热峰或者放热峰出现,说明相对于其他的比例而言,水和离子液体的比例为4∶1(摩尔比)对淀粉的溶解效果最好。  相似文献   
10.
孙大吟  叶一兰  梁福鑫  杨振忠 《化工学报》2021,72(12):6203-6215
Janus颗粒乳化剂兼具分子表面活性剂的双亲特性及均质固体颗粒的Pickering效应,能高效稳定乳化体系,为界面操控及其功能化、功能物质递送到界面提供新工具。以发展Janus颗粒乳化剂为工具,以软物质界面工程为对象,将为材料学与多领域的交叉融合提供新机遇。组成、尺寸、微结构是精细调控Janus颗粒乳化剂的关键。已实现了磁响应性Janus颗粒的规模化制备,在乳化体系的深度处理方面显示了优势。近年来新发展的高分子单链颗粒及其杂化胶体极大丰富了Janus材料种类,为微尺度工程提供新手段。多尺度Janus颗粒乳化剂可作为强有力工具用于解决界面工程问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号