首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   75篇
  国内免费   26篇
电工技术   16篇
综合类   24篇
化学工业   248篇
金属工艺   8篇
机械仪表   43篇
建筑科学   5篇
矿业工程   3篇
能源动力   21篇
轻工业   23篇
石油天然气   8篇
无线电   85篇
一般工业技术   147篇
冶金工业   1篇
原子能技术   1篇
自动化技术   70篇
  2024年   1篇
  2023年   11篇
  2022年   12篇
  2021年   15篇
  2020年   15篇
  2019年   13篇
  2018年   25篇
  2017年   29篇
  2016年   32篇
  2015年   31篇
  2014年   39篇
  2013年   55篇
  2012年   57篇
  2011年   66篇
  2010年   40篇
  2009年   56篇
  2008年   42篇
  2007年   31篇
  2006年   48篇
  2005年   30篇
  2004年   18篇
  2003年   13篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1951年   1篇
排序方式: 共有703条查询结果,搜索用时 15 毫秒
1.
Material functionalization of triboelectric nanogenerators (TENG) plays an important role in TENG's electric performance for sustainable energy harvesting. In this work, a method for improving polydimethylsiloxane (PDMS) composites triboelectric performance has been proposed, via filling high dielectric constant liquid (instead of solids) into PDMS matrix. The improvement is attributed to the high dielectric constant liquid in PDMS matrix that reduced the effective thickness of PDMS and increased the dielectric constant of PDMS composite synchronously. At 50% filling ratio (PDMS‐HD50), the triboelectric performance exhibits an enhancement of 4.5‐fold in output voltage and 3.9‐fold in output current as compared to pure PDMS. The results, besides higher transparency, are superior to the results from traditional solid dielectric constant doping materials like BaTiO3 nanoparticle in PDMS. This work has proved potentials of dielectric liquid filling materials in fabricating TENGs and could be a guidance for exploring new liquid filling materials.  相似文献   
2.
Understanding friction behavior of human skin is indispensable in order to optimize surfaces and materials in contact with the skin. The coefficient of friction (COF) for different materials contacting against the skin is mainly influenced by the nature of the materials, mechanical contact parameters, and physiological skin conditions. The aim of the present research work was to study the grip effect of two different polymeric materials by producing different textured patterns using a 3D printing microfabrication technique and a replication technique. It was found that under the same contact conditions, a difference in the friction amplitude exists between the two different polymeric materials and that positive texturing, which consists of high relief or protrusions, showed higher COFs than negative texturing, consisting of low relief, holes, or dimples, which showed a decrease in friction as the textured pattern area density increased.  相似文献   
3.
A series of novel addition cured polydimethylsiloxane (PDMS) nanocomposites with various amounts of nano‐silica sol were prepared via hydrosilylation for the first time. The influence of various amounts of nano‐silica sol on the morphology, thermal behavior, mechanical and optical properties of these PDMS nanocomposites was studied in detail. It was found that with an increment in the amount of nano‐silica sol the reinforcing effect of the nano‐silica sol on the thermal and mechanical properties of the PDMS nanocomposites was very noticeable compared with the reference material. The prominent improvements in resistance to thermal degradation and mechanical properties can probably be attributed to the strong interaction of PDMS chains and uniformly dispersed particles resulting from the nano‐silica sol. However, the transparency of the PDMS nanocomposites slightly decreased with an increment in weight fraction of nano‐silica, compared with that of PDMS composite without nano‐silica (Sol‐0), which can probably be ascribed to an increasing size of the aggregated particles in the PDMS nanocomposites. The optimum amount of nano‐silica sol for preparing novel addition curing PDMS nanocomposites was about 15 wt%. © 2015 Society of Chemical Industry  相似文献   
4.
Polymer brush coatings for combating marine biofouling   总被引:4,自引:0,他引:4  
A variety of functional polymer brushes and coatings have been developed for combating marine biofouling and biocorrosion with much less environmental impact than traditional biocides. This review summarizes recent developments in marine antifouling polymer brushes and coatings that are tethered to material surfaces and do not actively release biocides. Polymer brush coatings have been designed to inhibit molecular fouling, microfouling and macrofouling through incorporation or inclusion of multiple functionalities. Hydrophilic polymers, such as poly(ethylene glycol), hydrogels, zwitterionic polymers and polysaccharides, resist attachment of marine organisms effectively due to extensive hydration. Fouling release polymer coatings, based on fluoropolymers and poly(dimethylsiloxane) elastomers, minimize adhesion between marine organisms and material surfaces, leading to easy removal of biofoulants. Polycationic coatings are effective in reducing marine biofouling partly because of their good bactericidal properties. Recent advances in controlled radical polymerization and click chemistry have also allowed better molecular design and engineering of multifunctional brush coatings for improved antifouling efficacies.  相似文献   
5.
目的研究微波放电法对聚二甲基硅氧烷(PDMS)材料表面的改性效果。方法利用家用微波炉的微波作用以及自制的真空罩电极装置,产生低温等离子体放电,对PDMS材料表面进行激活处理。对处理后的PDMS材料表面接触角的恢复情况以及PDMS间的键合强度进行实验测试。结果微波放电处理后的PDMS材料表面初始呈现出很强的亲水性,当微波功率为140 W,工作5 s时,PDMS表面接触角可达到10°左右;通过观察发现随着放置时间的增加,PDMS材料表面接触角逐渐增大且在10天后恢复到原始疏水角状态;同时,经过改性的PDMS样品之间可实现较好的键合封装,其最优键合条件为80℃+1.5 h压合,其键合强度可达到12.4 N。结论使用微波放电法处理PDMS材料表面,可成功地对材料进行亲水改性处理,并实现PDMS间的很好键合。与传统等离子体处理键合方法相比,该方法简单、经济且高效。  相似文献   
6.
7.
Thin PDMS films with complex microstructures are used in the manufacturing of dielectric electro active polymer (DEAP) actuators, sensors and generators, to protect the metal electrode from large strains and to assure controlled actuation. The current manufacturing process at Danfoss Polypower A/S produces films with a one-sided microstructured surface only. It would be advantageous to produce a film with both surfaces microstructured, as this increases the film’s performance efficiency. The new technique introduced herein produces bilaterally microstructured film by combining an embossing method with the existing manufacturing process. In employing the new technique, films with microstructures on both surfaces are successfully made with two different liquid silicone rubber (LSR) formulations: 1) pure XLR630 and 2) XLR630 with titanium dioxide (TiO2). The LSR films (~70 µm) are cast on a carrier web substrate using a coating blade. The carrier web, which has a sinusoidal corrugation with wave height of 7 µm and a wave period of 7 µm on its surface, imparts corrugations to the bottom surface of the film. The elastomer film on the carrier web is preheated to the gel point, where the elastomer film can retain an imprint made on it. The preheated film at gel point is embossed between the rolls of a gravure lab coater, which corrugates the top surface of the film. The films are then heated, in order to cure completely. For the LSR systems used in this process, the optimum conditions for preheating are 110°C for 4–7 s, while for embossing the temperature is 110°C with 25 psi pressure between the rolls at a speed of 1.4 rpm. Scanning electron microscope (SEM) images confirm the formation of microstructures on both the surfaces of the film.  相似文献   
8.
9.
左成业  涂睿  丁晓斌  邢卫红 《化工学报》2020,71(9):4189-4199
乙酸与异丁醇酯化反应生产乙酸异丁酯,产生大量含异丁醇的废水,常规生化处理负荷重,浪费资源。采用PDMS复合膜分离回收酯化废水中的异丁醇,考察了异丁醇浓度对PDMS复合膜溶胀度及分离性能的影响,优化渗透汽化过程操作参数,研究了乙酸异丁酯对PDMS复合膜回收异丁醇效果的影响。结果表明,随着异丁醇浓度从1%增大到3%(质量),PDMS复合膜溶胀度先增大后趋于平稳,异丁醇的渗透通量呈增大趋势,分离因子保持在15左右;操作温度从30℃升至60℃时,渗透通量增大,异丁醇的分离因子下降,总表观活化能为33.87 kJ/mol;流速增加,Reynolds数增大,异丁醇渗透通量变化不大,但分离因子略有增大;微量乙酸异丁酯的存在可促进渗透汽化膜回收异丁醇。采用PDMS复合膜分离酯化废水中的异丁醇,回收率大于94.0%,渗余液中异丁醇浓度可降至0.1%(质量)左右。研究结果可为PDMS复合膜处理低浓度有机溶剂废水提供依据。  相似文献   
10.
Using PDMS (polydimethylsiloxane) as a basic polymeric matrix to the preparation of ethanol-permselective pervaporation membranes is a vibrant field of research. In this paper, a detailed study of the effects of the molecular weight of PDMS precursors and the content of the TEOS (tetraethyl orthosilicate) crosslinker on the degree of swelling in ethanol and ethanol contact angle is reported. Five PDMS precursors with molecular weights of 26.6 K, 35.5 K, 50.2 K, 71.7 K, and 110.4 K, and five crosslinking contents (1 wt%, 2 wt%, 5 wt%, 10 wt%, and 15 wt%) were chosen to prepare twenty-five PDMS networks. Considering only the maximum tensile strength of the networks, the optimum molecular weight of the precursor was found to be 35.5 K and the optimum crosslinker content was 5 wt%. The average Young’s modulus of the PDMS network prepared under these conditions reached 0.63 MPa after using toluene to extract the network. Some uncrosslinked precursors always occur in the networks, and have some influence on the molecular weight of the precursors and the crosslinker content that is used. It was found that the content of the uncrosslinked precursors has direct effect on the contact angle of ethanol sessile drops at the surface of the extracted PDMS networks, and higher extraction corresponded to a smaller ethanol contact angle. A combined parameter (S), defined as the quotient of the extraction amount (AE) and the tensile elastic modulus (EY), gives a good linear relationship with the increase in weight of networks swelled in ethanol. This means that the degree of equilibrium swelling of the networks is simultaneously strongly influenced by the tensile modulus and the content of the uncrosslinked precursors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号