首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   22篇
  国内免费   1篇
电工技术   2篇
综合类   7篇
化学工业   219篇
金属工艺   6篇
机械仪表   1篇
能源动力   6篇
轻工业   2篇
石油天然气   1篇
武器工业   1篇
无线电   7篇
一般工业技术   51篇
  2024年   1篇
  2023年   3篇
  2021年   3篇
  2020年   11篇
  2019年   11篇
  2018年   6篇
  2017年   11篇
  2016年   13篇
  2015年   11篇
  2014年   24篇
  2013年   29篇
  2012年   26篇
  2011年   28篇
  2010年   34篇
  2009年   24篇
  2008年   14篇
  2007年   15篇
  2006年   15篇
  2005年   16篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
排序方式: 共有303条查询结果,搜索用时 15 毫秒
1.
This study aims to investigate the effects of methacrylate-functionalized polyhedral oligomeric silsesquioxane (MA-POSS) on polyolefin-based adhesives. The so called adhesive was synthesized by the cooligomerization of 1-decene/9-decene-1-ol monomers using a Ti amine bis-phenolate catalyst, [Ti{2,2′-(OC6H2-4,6-tBu2)2NHC2H4NH(OiPr)2], which was subsequentlyacrylated via a simple reaction with methacryloyl chloride. Different weight fractions of MA-POSS nanoparticles were solution blended with synthesized adhesive and undergone curing reaction with blue light. Observation of a unique tan δ peak in dynamic mechanical thermal analysis (DMTA) curve was clear evidence that two employed moieties were miscible and only one hybrid polymeric phase was created. Most noticeably, significant increase in mechanical parameters was detected in the lower inclusion compositions, 0.2-1 wt% of MA-POSS, where flexural strength and flexural modulus were increased up to 99 and 110%, respectively. Furthermore, thermal stability of the synthesized nanocomposite enhanced dramatically by increasing MA-POSS weight fraction. Influence of employed nanoparticles on adhesion properties of synthesized nanocomposites was evaluated with tensile shear bond strength and pull off analysis. According to the adhesion results, the MA-POSS causes an adhesion promotion on the fabricated adhesive/POSS nanocomposites.  相似文献   
2.
In this study, novel metallo‐supramolecular materials based on terpyridine‐functionalized polyhedral silsesquioxane were synthesized from 4′‐chloro‐2,2′:6′,2″‐terpyridine and amino‐group‐functionalized polyhedral oligomeric silsesquioxane. The obtained terpyridine‐functionalized polyhedral silsesquioxanes were converted to metallo‐supramolecular hybrid materials by coordination polycondensation reaction with Co(II) or Cu(II) ions. The supramolecular polymers created were characterized by means of structure, morphology and stimuli‐responsive performance employing scanning electron microscopy, amperometric techniques and UV–visible and Fourier transform IR spectroscopy. UV?visible and cyclic voltammetry studies showed that both the optical and electrochemical properties of metallo‐supramolecular materials are affected by the substituent at the pyridine periphery. The supramolecular polymers obtained exhibited electrochromism during the oxidation processes of cyclic voltammogram studies. As a result, these terpyridine‐functionalized polyhedral silsesquioxanes are good candidates for electronic, opto‐electronic and photovoltaic applications as smart stimuli‐responsive materials. © 2013 Society of Chemical Industry  相似文献   
3.
The aim of this article is to improve the interfacial adhesion between silicone rubber (SR) and Rayon fiber by the help of functional hybrid POSS nanoparticles. Two POSS types were compared, octavinyl-POSS (O-POSS) and methacryl-POSS (M-POSS), having reactive  CC double bonds that can impart in peroxide crosslinking. O-POSS is nonpolar, whereas M-POSS is polar and is able to make H-bond with Rayon fibers. POSS type and their concentrations were examined as the experimental parameters. H-adhesion tests indicated that both POSS types enhanced the adhesion of SR composites to Rayon fibers compared with control recipe. Specifically, slightly higher values were obtained with the use of M-POSS. It was observed that both O-POSS and M-POSS slowed down the curing rate but increased the degree of crosslinking. The cure extent of O-POSS containing composites was found to be higher than that of M-POSS containing ones. Thermal gravimetric analyses revealed that thermal stability of SR composites was significantly improved by the addition of POSS particles. Higher char yield and degradation temperatures were obtained with O-POSS at higher loadings with respect to M-POSS. The POSS distribution at lower loading levels was found to be homogenous for both POSS types as observed from scanning electron microscope and transmission electron microscope.  相似文献   
4.
Nano‐sized polyhedral oligomeric silsesquioxane (POSS) diol or ethylene glycol (EG) as diol monomer was incorporated into hydroxyl‐terminated polybutadiene (HTPBD) chain in the presence of fumaryl or thionyl chloride as extenders. Using these polyesterification reactions, two fumarate‐based polyesters and two polyester sulfites were synthesized. Each couple of polyesters and polyester sulfites includes a linear (diol:EG) and a nanohybrid macromer (diol:POSS). Full structural characterization was performed using Fourier transform infrared, 1H NMR and 13C NMR spectroscopies. Gel permeation chromatography was undertaken to study polyesterification mechanisms by deconvolution of the obtained traces. Finally, differential scanning calorimetry, thermogravimetric analysis and cell culture were performed to evaluate the structure–property relationship for the synthesized macromers in comparison with unreacted HTPBD. © 2016 Society of Chemical Industry  相似文献   
5.
The structure–transport properties of mixed soft‐segmented poly(urethane‐imide) (MSPUI) membranes and their microstructures were investigated. Polypropylene glycol, polycaprolactone diol and bis(3‐aminopropyl)‐terminated polydimethylsiloxane were used as the soft segments in the membrane synthesis via a three‐step polymerization reaction. The chemical structures of the MSPUI membranes were characterized using attenuated total reflectance Fourier transform infrared spectroscopy. Morphology and surface properties of the membranes were studied using scanning electron and atomic force microscopy techniques. Surface energy measurements indicated the enrichment of the hydrophobic soft segment in the membranes. The amorphous nature of the polymers was analysed using wide‐angle X‐ray diffraction. The effect of morphology on the permeability and selectivity of the membranes is discussed. Finally, membrane structure–transport property relationships were correlated. © 2013 Society of Chemical Industry  相似文献   
6.
A series of cyanate ester resin (CE) based organic–inorganic hybrids containing different contents (0, 5, 10, 15 and 20 wt%) of epoxy‐functionalized polyhedral oligomeric silsesquioxane (POSS‐Ep) were prepared by casting and curing. The hybrid resin systems were studied by the gel time test to evaluate the effect of POSS‐Ep on the curing reactivity of CE. The impact and flexural strengths of the hybrids were investigated. The micromorphological, dynamic mechanical and thermal properties of the hybrids were studied by SEM, dynamic mechanical analysis (DMA) and TGA, respectively. Results showed that POSS‐Ep prolonged the gel time of CE. CE10 containing 10 wt% POSS‐Ep displayed not only the optimum impact strength but the optimum flexural strength. SEM results revealed that the improvement of mechanical properties was attributed to the large amount of tough whirls and fiber‐like pull‐outs observed on the fracture surfaces of CE10. DMA results indicated that POSS‐CE tended to decrease E′ of the hybrids in the glassy state but to increase E′ of the hybrids in the rubbery state. TGA results showed that CE10 also possesses the best thermal stability. The initial temperature of decomposition (Ti) of CE10 is 426 °C, 44 °C higher than that of pristine CE. © 2013 Society of Chemical Industry  相似文献   
7.
笼型倍半硅氧烷(POSS)的研究新进展   总被引:1,自引:0,他引:1  
介绍了倍半硅氧烷(POSS)的结构特点,并综述了POSS的研究进展。概述了国内外的合成方法及其应用。  相似文献   
8.
以3,3′,4,4′-联苯四酸二酐(sBPDA)和2,2′-二甲基-4,4′-二氨基联苯胺(DMBZ)为聚合单体,八(氨基苯基)聚倍半硅氧烷(OAPS)为交联剂,SiO2纳米粒子为填料,采用超临界二氧化碳干燥工艺制备了一系列聚酰亚胺(PI)/SiO2纳米复合气凝胶(CPIA-SiO2-0~CPIA-SiO2-7)。研究表明:SiO2纳米粒子的引入对PI气凝胶的耐热性能未产生显著的影响。然而,随着SiO2纳米粒子含量的增加,PI气凝胶的孔隙率从89.6%逐渐降低至79.4%,BET表面积也随之从425.5m2/g降低至380.2m2/g,纳米泡孔孔径分布呈现出变宽的趋势。SiO2的引入显著提高了PI气凝胶的抗原子氧侵蚀能力,含量为7%(质量分数,下同)的PI/SiO2复合气凝胶CPIA-SiO2-7的原子氧侵蚀率(2.6%)仅为不含SiO2气凝胶CPIA-SiO2-0的原子氧侵蚀率(12.3%)的1/5左右。  相似文献   
9.
Poly [2-(cinnamoyloxy)ethyl methacrylate-co-octamethacryl-POSS] nanocomposites were synthesized from octamethacryl-POSS and 2-(cinnamoyloxy)ethyl methacrylate (CEM) by free radical polymerization. The chemical structures and morphologies of these nanocomposites were determined by FTIR, 29Si NMR, energy-dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) techniques. The XRD data showed that the materials were amorphous in nature, indicating that POSS formed an aggregate instead of a crystalline form in the polymer matrix. The POSS-CEM nanocomposites exhibited high thermal stability. Excitation and emission of the CEM-incorporated POSS nanocomposites, studied in the solid state, exhibited blue emission with CIE (x, 0.178; y, 0.137) coordinates, in addition to an emission intensity that increased with increasing CEM (monomer) concentration.  相似文献   
10.
The kinetics and thermal/physical properties of the trithiol-TAE (triallyl ether) system were measured with respect to increasing polyoligomeric silsesquioxane (POSS) concentrations in order to understand how the presence of POSS nanoparticles affects network formation at low loadings. Vinyl POSS monomer (vPOSS-Bu4) with both vinyl and carboxylate pendant groups was synthesized via a thermally initiated, free-radical reaction to improve the compatibility of the inorganic particles with the trithiol and triallyl ether comomoners. Chemically modified vPOSS-Bu4 particles were incorporated into the trithiol-TAE polymer networks by a thiol-ene free-radical photopolymerization at molar concentrations of 0, 1, and 5 ene mol%. The polymerization rates were analyzed using real-time FTIR and photo-DSC. The polymerization rates showed no significant changes with increasing vPOSS-Bu4 concentration. Thermal analyses of the films by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) demonstrated that thermal stability improves without affecting T g as the POSS concentration increased. Additionally, scratch resistance increased and flame spread decreased markedly with increasing POSS concentration for concentrations up to 5 mol% vPOSS-Bu4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号