首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19108篇
  免费   1503篇
  国内免费   1075篇
电工技术   735篇
技术理论   2篇
综合类   978篇
化学工业   5252篇
金属工艺   1966篇
机械仪表   771篇
建筑科学   691篇
矿业工程   230篇
能源动力   880篇
轻工业   968篇
水利工程   209篇
石油天然气   442篇
武器工业   107篇
无线电   2091篇
一般工业技术   3541篇
冶金工业   574篇
原子能技术   299篇
自动化技术   1950篇
  2024年   16篇
  2023年   418篇
  2022年   463篇
  2021年   751篇
  2020年   690篇
  2019年   698篇
  2018年   645篇
  2017年   723篇
  2016年   625篇
  2015年   635篇
  2014年   971篇
  2013年   1265篇
  2012年   931篇
  2011年   1383篇
  2010年   927篇
  2009年   1057篇
  2008年   1008篇
  2007年   1045篇
  2006年   943篇
  2005年   823篇
  2004年   776篇
  2003年   755篇
  2002年   636篇
  2001年   448篇
  2000年   430篇
  1999年   389篇
  1998年   314篇
  1997年   308篇
  1996年   275篇
  1995年   239篇
  1994年   191篇
  1993年   171篇
  1992年   141篇
  1991年   124篇
  1990年   105篇
  1989年   70篇
  1988年   69篇
  1987年   34篇
  1986年   31篇
  1985年   40篇
  1984年   24篇
  1983年   32篇
  1982年   27篇
  1981年   11篇
  1980年   9篇
  1979年   5篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Samples in Si–Al-R-O-N (R = Y, Gd, Yb) systems were prepared by solid-state reactions using R2O3, Al2O3, SiO2 and Si3N4 powders as starting materials. X-ray diffraction was done to investigate RAM-J(R) solid solutions [RAM = R4Al2O9, J(R) = R4Si2N2O7] formation and their equilibrium with RSO (R4Si2O10). Phase relations between RAM, J(R) and RSO at 1700 °C were summarized in a phase diagram. It was determined that a limited solid solution of RAM and RSO could be formed along RAM-RSO tie-line, while RAM and J(R) form a continuous solid solution along RAM-J(R) tie-line. In RAM-J(R)-RSO ternary systems, the RAM-J(R) tie-lines were extended towards the RSO corner to form a continuous solid solution area of JRAMss (R = Y, Gd, Yb). The established phase relations in the Si–Al-R-O-N (R = Y, Gd, Yb) systems may facilitate compositional selections for developing JRAMss as monolithic ceramics or for SiC/Si3N4 based composites using the solid-solutions as a second refractory phase.  相似文献   
2.
《Ceramics International》2021,47(19):27479-27486
Threshold switching (TS) devices have evolved as one of the most promising elements in memory circuit due to their important significance in suppressing crosstalk current in the crisscross array structure. However, the issue of high threshold voltage (Vth) and low stability still restricts their potential applications. Herein, the vanadium oxide (VOx) films deposited by the pulsed laser deposition (PLD) method are adopted as the switching layer to construct the TS devices. The TS devices with Pt/VOx/Pt/PI structure exhibit non-polar, electroforming-free, and volatile TS characteristics with an ultralow Vth (+0.48 V/−0.48 V). Besides that, the TS devices also demonstrates high stability, without obviously performance degradations after 350 cycles of endurance measurements. Additionally, the transition mechanism is mainly attributed to the synergistic effect of metal-insulator transition of VO2 and oxygen vacancies. Furthermore, the nonvolatile bipolar resistance switching behaviors can be obtained by changing oxygen pressure during the deposition process for switching films. This work demonstrates that vanadium oxide film is a good candidate as switching layer for applications in the TS devices and opens an avenue for future electronics.  相似文献   
3.
In this study, the destabilization resistance of Sc2O3 and CeO2 co-stabilized ZrO2 (SCZ) ceramics was tested in Na2SO4 + V2O5 molten salts at 750°C–1100 °C. The phase structure and microstructure evolution of the samples during the hot corrosion testing were analyzed with X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and X-ray photoelectron spectroscopy (XPS). Results showed that the destabilization of SCZ ceramics at 750 °C was the result of the chemical reaction with V2O5 to produce m-ZrO2 and CeVO4, and little ScVO4 was detected in the Sc2O3-rich SCZ ceramics. The primary corrosion products at 900 °C and 1100 °C were CeO2 and m-ZrO2 due to the mineralization effect. The Sc2O3-rich SCZ ceramics exhibited excellent degradation resistance and phase stability owing to the enhanced bond strength and the decreased size misfit between Zr4+ and Sc3+. The destabilization mechanism of SCZ ceramic under hot corrosion was also discussed.  相似文献   
4.
《Ceramics International》2021,47(21):29681-29687
Inorganic piezoelectric ceramic composite is the potential sensing element for long-term structural health monitoring due to its excellent durability and compatibility. In this study, a Ceramicrete-based piezoelectric composite is proposed preliminarily, in which the magnesium potassium phosphate cement is used as the matrix and the lead zirconate titanate particle is utilized as the functional phase. Piezoelectric properties test and microstructure analysis are performed to evaluate the testing samples. Results show that the piezoelectric performance of the composite increase with the increase of piezoelectric ceramic particle size. The value of the piezoelectric strain factor (d33) can reach 83.8 pC/N, while the corresponding piezoelectric voltage factor (g33) is 50.1 × 10-3 V•m/N at the 50th day after polarization. Microstructure analysis illustrates that the interfacial transition zone (ITZ) between the matrix and the particles is dense. Moreover, the influence of aging on the composite is attributed to the continuous hydration after polarization. It indicates that the composites have a higher piezoelectric performance, which can be regarded as a promising sensing element material.  相似文献   
5.
The glass transition temperature (Tg) is a key parameter to investigate for application in nuclear waste immobilization in borosilicate glasses. Tg for several glasses containing iodine (I) has been measured in order to determine the I effect on Tg. Two series of glass composition (ISG and NH) containing up to 2.5 mol% I and synthesized under high pressure (0.5 to 1.5 GPa) have been investigated using differential scanning calorimetry (DSC). The I local environment in glasses has been determined using X-ray photoelectron spectroscopy and revealed that I is dissolved under its iodide form (I). Results show that Tg is decreased with the I addition in the glass in agreement with previous results. We also observed that this Tg decrease is a strong function of glass composition. For NH, 2.5 mol% I induces a decrease of 24°C in Tg, whereas for ISG, 1.2 mol% decreases the Tg by 64°C. We interpret this difference as the result of the I dissolution mechanism and its effect on the polymerization of the boron network. The I dissolution in ISG is accompanied by a depolymerization of the boron network, whereas it is the opposite in NH. Although ISG corresponds to a standardized glass, for the particular case of I immobilization it appears less adequate than NH considering that the decrease in Tg for NH is small in comparison to ISG.  相似文献   
6.
This paper focuses on the design of a 2.3–21 GHz Distributed Low Noise Amplifier (LNA) with low noise figure (NF), high gain (S21), and high linearity (IIP3) for broadband applications. This distributed amplifier (DA) includes S/C/X/Ku/K-band, which makes it very suitable for heterodyne receivers. The proposed DA uses a 0.18 μm GaAs pHEMT process (OMMIC ED02AH) in cascade architecture with lines adaptation and equalization of phase velocity techniques, to absorb their parasitic capacitances into the gate and drain transmission lines in order to achieve wide bandwidth and to enhance gain and linearity. The proposed broadband DA achieved an excellent gain in the flatness of 13.5 ± 0.2 dB, a low noise figure of 3.44 ± 1.12 dB, and a small group delay variation of ±19.721 ps over the range of 2.3–21 GHz. The input and output reflection coefficients S11 and S22 are less than −10 dB. The input compression point (P1dB) and input third-order intercept point (IIP3) are −1.5 dBm and 11.5 dBm, respectively at 13 GHz. The dissipated power is 282 mW and the core layout size is 2.2 × 0.8 mm2.  相似文献   
7.
A strategy that constructs the morphotropic phase boundary and manipulates the domain structure has been used to design the component of 0.96[Bi0.5(Na0.84K0.16)0.5Ti(1-x)NbxO3]-0.04SrTiO3 (BNKT-4ST-100xNb) to enhance the strain properties for actuator application. Non-equivalent Nb5+ donor doping modulates the phase transition from the mixture of rhombohedral and tetragonal phases to the pseudocubic phase and results in the coexistence of multiple phases. Moreover, the high-resolution TEM confirms the existence of polar nano regions that contribute to the macroscopic relaxor behaviour. The size of the domains is reduced with increasing Nb5+, resulting in an enhanced relaxor behaviour. The ferroelectric-relaxor transition temperature decreases from 85 to below 30 °C, implying a non-ergodic to ergodic relaxor transition. An improved strain of 0.56% and a giant normalized strain of 1120 pm/V were achieved for BNKT-4ST-1.5Nb, which were attributed to the unique domain structure in which nanodomains are embedded in an undistorted cubic matrix. Ferroelectric, antiferroelectric, and relaxor phases coexist. As the electric field is large enough, a reversible phase transition occurs. Furthermore, good temperature stability was obtained due to the stability of the nanodomains, and no degradation in strains was observed even after 104 cycles, which may originate from the reversible phase transition and dynamic domain wall. The results show that this design strategy offers a reference way to improve the strain behaviour and that BNKT-4ST-100xNb ceramics could be a potential material for high-displacement actuator applications.  相似文献   
8.
The objective of this study was to evaluate the influence of pH on rheological and viscoelastic properties of solutions based on blends of type A (GeA) or type B (GeB) gelatin and chitosan (CH). Solutions of GeA, GeB, CH, GeA:CH, and GeB:CH were prepared in several pH (3.5–6.0) and analyzed for determination of zeta-potential. Rheological analyses (stationary and dynamic essays) were carried out with blends allowing to study the effect of pH on shear stress, apparent viscosity, loss (G”) and storage (G’) moduli, and angle phase (Tanδ). Zeta potential of all biopolymers decreased linearly as a function of pH. CH presented higher values, and GeB, the lowest one, being the only having negative values at pH > 5. Overall, the pH influenced the rheological and viscoelastic properties of the colloidal solutions: shear stress and apparent viscosity increased as a function of pH. Other assays were carried out at 3% and 5% strain, for GeA:CH and GeB:CH, respectively. In the sol domain, G’ and G” (1 Hz) increased linearly for GeA:CH. But for GeB:CH, they increased in two linear different regions: one function between pH 3.5 and 5.0 and another one between 5.0 and 6.0, being a more important effect was visible in this last domain probably due to the negative net charge of gelatin, above it pI. An effect in two domains was also visible for Tanδ, explained in the same manner as previously. The GeB:CH blends behaved like diluted solutions, and transition temperatures increased as a function of pH.  相似文献   
9.
As one of the cleanest energies, hydrogen has attracted much attention over the past decade. Hydrogen can be produced using water electrolysis in a Proton Exchange Membrane Electrolysis Cell (PEMEC). In the present study, the performance of the PEMEC, powered by the Photovoltaic-Thermal (PVT) system, is scrutinized. It is considered that the PVT system provides the required electrical power of the PEMEC and preheats the feedwater. A comprehensive numerical model of the coupled PVT-PEMEC system is developed. The model is used to investigate the effect of various operating parameters, including solar radiation intensity, inlet feedwater temperature, and feedwater mass flow rate, on the hydrogen production and operating voltage of the PEMEC at various Exchange Current Densities (ECDs). Furthermore, the effect of integration of Phase Change Material (PCM) and Thermoelectric Generator (TEG) on the hydrogen production of the system is evaluated. According to the obtained results, the PVT-TEG-PEMEC system outperforms other systems in hydrogen production. However, integration of the PVT-PEMEC system with PCM has a negligible effect on its hydrogen production.  相似文献   
10.
In the present work it is found that the pyrotechnic composition VS-2 can be initiated with flash lamps IFC-500 and EVIS. VS-2 pyrotechnic composition contains 90% of mercury(Ⅱ) 5-hydrazinotetrazolate perchlorate and 10% of optically transparent copolymer of 2-methyl-5-vinyltetrazole and methacrylic acid (PVMT). We have found that the flash lamps make it possible to initiate combustion of VS-2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high, and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm-2 and 90 mg·cm-2, showing ignition delay times 10 μs and 3 μs, respectively. We also measured detonation velocities for VS-2 composition film charges, which were 4375-4505 m·s-1 (of the charge being surface mass 60 mg·cm-2) and 4221-4281 m·s-1 (of the charge being surface mass 90 mg·cm-2) and their blasting action on the aluminum plate. The depths of the normal shock wave imprints at the charge-barrier interface were 0.6-0.7 mm (for surface mass of the film charges 60 mg·cm-2) and 1.2-1.3 mm (for surface mass of the film charges 90 mg·cm-2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号