首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17534篇
  免费   1271篇
  国内免费   694篇
电工技术   390篇
综合类   1071篇
化学工业   4347篇
金属工艺   2416篇
机械仪表   586篇
建筑科学   1031篇
矿业工程   679篇
能源动力   191篇
轻工业   2430篇
水利工程   114篇
石油天然气   207篇
武器工业   270篇
无线电   418篇
一般工业技术   2437篇
冶金工业   2751篇
原子能技术   83篇
自动化技术   78篇
  2024年   40篇
  2023年   293篇
  2022年   481篇
  2021年   559篇
  2020年   547篇
  2019年   436篇
  2018年   444篇
  2017年   538篇
  2016年   496篇
  2015年   517篇
  2014年   798篇
  2013年   809篇
  2012年   1017篇
  2011年   1123篇
  2010年   900篇
  2009年   849篇
  2008年   746篇
  2007年   1164篇
  2006年   1172篇
  2005年   1068篇
  2004年   918篇
  2003年   787篇
  2002年   699篇
  2001年   586篇
  2000年   494篇
  1999年   388篇
  1998年   366篇
  1997年   282篇
  1996年   225篇
  1995年   186篇
  1994年   189篇
  1993年   129篇
  1992年   94篇
  1991年   39篇
  1990年   33篇
  1989年   32篇
  1988年   13篇
  1987年   9篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   5篇
  1981年   9篇
  1980年   6篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The micro-powder injection molding (micro-PIM) process has the potential to bridge the gap between the design and manufacturing of micro-components that are often used in small and handy devices. Numerical modeling helps to analyze and overcome various difficulties of micro-PIM. In the present work, a numerical model is developed to predict the powder–binder separation (a common defect in PIM and especially severe in micro-PIM) during the injection of an alumina feedstock. A powder–binder separation criterion is proposed dealing with applied injection pressure and friction force between the powder and binder. An indirect comparison of feedstock travel time between two locations is used to validate the model. The predicted segregation from the simulated result is supported by a qualitative experimental measurement. The developed model can be used to optimize injection parameters to get a defect-free product.  相似文献   
2.
MgB2 superconductor pellets were synthesized through Mg gas infiltration method using nanosized- and microsized B powders. There was a marked difference in the superconducting properties of the two samples, particularly in the pinning force and dominant pinning mechanism. The microstructures of the samples were observed using HR-TEM and STEM-HAADF, and the results showed that the primary reason for the difference in the superconducting properties is the distribution of the nanosized second-phase particle MgO. Additionally, a feasible reaction model for the Mg gas infiltration method was established. Compared to the Mg liquid infiltration method, the gas infiltration showed better penetrability ability with a small amount of residual Mg. This study presents a novel synthesis process to fabricate an MgB2 pellet with superior density and superconducting properties. This method can be used in multiple applications such as superconducting bearings, compact superconductor magnets, and magnetic shielding.  相似文献   
3.
以红心火龙果发酵液作为研究对象,通过优化喷雾干燥工艺制备粉剂,最佳工艺条件为:20%麦芽糊精,进液量:10mL/min,进口温度为120℃,出口温度为65℃;得到的粉剂为紫红色粉末,益生菌含量达到108cfu/g以上,口感酸甜。将发酵后的火龙果籽进行提取,得到的火龙果籽油含有丰富的十六酸、亚油酸和油酸。  相似文献   
4.
One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.  相似文献   
5.
《Soils and Foundations》2022,62(5):101206
Coral sand is one kind of the important building materials in coral reef engineering practice. The use of cement as a stabilizing agent can significantly improve the mechanical properties of coral sands and is widely applied in the subbase engineering construction in coral reef islands. Cement-stabilized coral sand structures may contain high contents of fine coral particles and salinity because of the high crushability of coral sands and the existence of seawater surrounding them. In this study, the effects of coral sand powders and seawater salinity on the dynamic mechanical properties of cemented coral sand (CCS) were investigated through the split Hopkinson pressure bar (SHPB) tests and Scanning Electron Microscope (SEM) analysis. It was found that the strength (i.e., the peak stress) of CCS specimens increased firstly and then decreased with the increase of powder content. The specimens reached the maximum peak stress when 3% powder content was included. The initial improvement of CCS strength was attributed to the pore-filling effect of coral powders, namely, the micro pores of the CCS specimens could be more effectively filled with higher percentages of coral powders being used in the experiments. However, excessive coral powders resulted in the reduction of specimen strength because these powders could easily be cemented into agglomerates by absorbing water from the specimens. These agglomerates could reduce the cementation strength between the coarse coral particles and the cement. Meanwhile, the peak stress of CCS specimens was found to be negatively correlated with the average strain rate and the ultimate strain. The degree of specimen fracture was found to be correlated with the amount of specific energy absorption during the tests. Furthermore, the “sulfate attack” caused by the inclusion of salinity of water had different influences on the CCS specimens with different coral powder contents. The ettringite and gypsum produced in “sulfate attack” could fill the pores and lead to cracking of the specimens, significantly affecting the specimen strength.  相似文献   
6.
《Ceramics International》2021,47(23):32963-32968
Effects of carbon source in single-source ZrC-based liquid precursors on the properties of the precursors and precursor-derived nano ZrC powders were investigated. The liquid precursors were prepared by directly blending and heating zirconium n-butoxide with either 2,4-pentanedione, benzoyl acetone or 1,3-diphenyl-1,3-propanedione additives which have the same chemical composition and structure except for the number of benzene rings (0, 1 and 2, respectively) in order to control the carbon content in the precursors. The ceramic yield of the precursor decreased as the number of benzene rings in the precursors increased. The stability of the precursors in air and the carbon content of the ceramic powder increased when using 1,3-diphenyl-1,3-propanedione additive. X-ray pure nano zirconium carbide powders with ultra-fine size (30 nm), isotropic shape and homogeneous particle size distribution were synthesized from the liquid precursors containing two benzene rings in the structure. Compared with ZrC powders derived from the precursors containing zero or one benzene ring, the powder from the precursor containing two benzene rings was finer and more homogeneous in size distribution.  相似文献   
7.
《Ceramics International》2022,48(3):3762-3770
Cf/Hf0.5Zr0.5C-SiC composites were prepared by introducing Hf0.5Zr0.5C matrix (11 cycles) and SiC matrix (9 cycles) into the carbon cloth preform through precursor impregnation and pyrolysis (PIP) process. The influence of the introduction time of SiC matrix on the microstructure and mechanical properties of Cf/Hf0.5Zr0.5C-SiC composites was studied, and the results show that with the increase of the PIP cycles of the SiC matrix introduced before Hf0.5Zr0.5C matrix, the composite open porosity decreased, and the flexural strength and modulus presented an obvious upward trend. CS45 sample, which has 4 cycles of PIP SiC introduced in advance, has the highest flexural strength, flexural modulus and interfacial shear strength of 402.73 ± 35.73 MPa, 56.92 ± 3.97 GPa and 100.88 ± 7.79 MPa, respectively. Hf0.5Zr0.5C matrix has a loose and porous structure, so when more SiC matrix was introduced in advance, its covering effect on the surface of fibers led to less intra-bundle pores and thusly denser composite structure, and due to the compactness of SiC matrix, better overall bonding of fiber, interface and matrix was achieved, as well as better load transfer effect, which led to obvious interfacial debonding and cracking based on the in-situ SEM observation during flexural tests. While in the sample without pre-introduced SiC, the cracking occurred mainly between the interface and porous matrix and the overall performance of the material was poor.  相似文献   
8.
《Ceramics International》2022,48(10):14192-14200
In this study, mold powder slurries with high solid loading and low viscosity were prepared during the ball-milling process for improving the homogeneity and mechanical properties of granules after spray-drying. The effect of ball-milling parameters, such as solid loading, binder/dispersant content, and ball-milling time, on the flowability, dispersibility, stability, and rheological behavior of mold powder slurries was systematically investigated by rheology observation and sedimentation tests. As these parameters varied, the slurry exhibited the shear-thinning behavior of a non-Newtonian fluid with a shear rate range of 0–50 s?1, which was adequately described by the Herschel-Bulkley model. The optimal parameters that optimized the flowability, dispersibility, and stability of the slurry, along with its rheological behavior, were chosen as follows: solid loading, 60 wt%; modified sodium carboxymethyl cellulose binder content, 1.0 wt%; sodium tripolyphosphate dispersant content, 0.5 wt%; ball-milling time, 60 min.  相似文献   
9.
In order to ameliorate the gel quality of Dosidicus gigas surimi, the effects of laver powder on gel properties, rheological properties, and water-holding capacity (WHC) were investigated. Results indicated that the addition of laver powder could significantly increase the hardness, chewiness, and breaking force of surimi gels. However, the texture indexes and gel strength began to decline when additional amount exceeded 0.6%. Rheological results demonstrated that the addition of laver powder increased the storage modulus (G′) and viscosity of surimi, prolonged protein denaturation temperature in surimi gels. Moreover, the WHC of surimi gel was improved with the increase of laver powder. Further analyses in low-field nuclear magnetic resonance revealed that laver powder could shorten the transverse relaxation time, enhanced the combination with water, and altered the distribution of different water categories. The proportion of bound water and immobilized water reached its maximum and minimum at 0.6% of laver powder, respectively. Correlation analyses showed that WHC of surimi gel was negatively correlated well with the proportion of loose-bound water, but positively correlated with the strong-bound water and free water. In conclusion, the results supported that 0.6% was the optimal additional amount of laver powder for the squid-based surimi production based on the current ingredients of surimi products.  相似文献   
10.
ABSTRACT

A method of ultrafine macro-homogeneous composite powder – B4C–ZrO2 production using a planetary mill was developed. From the macro-homogeneous composite high-density ceramics, B4C–ZrB2 was produced by the method of reactive sintering (in situ) at 2000°C under the pressure of 41–42?MPa. The effect of ZrO2 grain size and of its distribution in the matrix on the consolidation parameters, and the microstructure of the obtained ceramics was studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号