首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7321篇
  免费   299篇
  国内免费   471篇
电工技术   560篇
综合类   264篇
化学工业   1244篇
金属工艺   1136篇
机械仪表   227篇
建筑科学   106篇
矿业工程   50篇
能源动力   341篇
轻工业   307篇
水利工程   10篇
石油天然气   20篇
武器工业   42篇
无线电   1061篇
一般工业技术   2140篇
冶金工业   153篇
原子能技术   166篇
自动化技术   264篇
  2024年   12篇
  2023年   96篇
  2022年   152篇
  2021年   187篇
  2020年   153篇
  2019年   144篇
  2018年   134篇
  2017年   219篇
  2016年   189篇
  2015年   199篇
  2014年   254篇
  2013年   345篇
  2012年   530篇
  2011年   656篇
  2010年   511篇
  2009年   573篇
  2008年   551篇
  2007年   522篇
  2006年   516篇
  2005年   380篇
  2004年   292篇
  2003年   251篇
  2002年   220篇
  2001年   167篇
  2000年   156篇
  1999年   132篇
  1998年   114篇
  1997年   77篇
  1996年   63篇
  1995年   56篇
  1994年   64篇
  1993年   35篇
  1992年   32篇
  1991年   30篇
  1990年   19篇
  1989年   16篇
  1988年   12篇
  1987年   13篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有8091条查询结果,搜索用时 390 毫秒
1.
《Ceramics International》2022,48(14):20194-20200
In this paper, TCO (Transparent Conductive Oxide) incorporating ultrathin Ag intermediate film is proposed as a new buffer layer to enhance the efficiency of CIGS thin-film solar cells (TFSCs). In this regard, versatile multilayer thin-films based on ZnO/Ag/ZnO and ITO/Ag/ITO structures were deposited on glass using RF magnetron sputtering technique to determine the optoelectronic parameters of the multilayer structures. The elaborated samples were then characterized using SEM, EDS, XRD, and UV–Visible absorption spectroscopy techniques to investigate the structure morphological, optical, and electronic properties. The deposited multilayer thin-films showed amorphous-like structure and exhibited a broadband absorbance over the visible and even NIR spectrum ranges, indicating its potential application as alternative buffer layers for thin-film solar cells. In this context, TCO/Ag/TCO/CIGS solar cells have been numerically investigated using the deposited multilayer optoelectronic properties. It was revealed that the estimated efficiency of the ZnO/Ag/ZnO/CIGS-based solar cell could reach 18.5% with an open circuit voltage of 0.7 V and a short-circuit current density of 34.8 mA/cm2. The performances exhibited by the investigated solar cell demonstrated that ZnO/Ag/ZnO multilayer can be used as an alternative to the conventional CdS buffer layer for developing high-performance non-toxic CIGS solar cells.  相似文献   
2.
A consecutive competitive gas-liquid reaction is investigated using a Taylor bubble setup regarding the influence of fluid mixing in the bubble wake on yield and selectivity. The concentration fields behind a Taylor bubble are visualized and measured quantitatively with a novel time-resolved absorption imaging technique based on Beer Lamberts law and an integral selectivity is derived. In addition, the calculation of the local selectivity, often used in numerical approaches, is discussed and the existing experimental limits for its derivation are pointed out. Finally, an increase in selectivity of a competitive consecutive reaction for enhanced mixing is experimentally confirmed.  相似文献   
3.
《Ceramics International》2022,48(21):31491-31499
In this study, an all-solid-state electrochromic device (ECD) with the structure of ITO/WO3/Al2SiO5/NiOx/ITO was prepared, and the effect of the Al2SiO5 solid electrolyte thicknesses on the opto-electrical performance was investigated. The microstructure and surface morphology were characterized using XRD, SEM and AFM, and the surface morphology and degree of surface looseness demonstrate a significant influence on the opto-electrical properties of ECDs. The charge transfer dynamics at the solid-solid interface were characterized using EIS to obtain an ionic conductivity of 4.637 × 10-8 S/cm. CV, CA and UV–Visible spectra were employed to record the in situ electrochemical and optical properties. The results revealed that the highest optical modulation was 44.58%, the coloring and bleaching times were 14.8 s and 3.7 s, and the highest coloring efficiency was 98.17 cm2/C, which indicates that excellent opto-electrical properties were obtained. When the thickness increases, the degree of surface dense morphology transforms, and the loose morphology is more favorable for ion conductivity, which improves the opto-electrical properties. The results in this study provide insights into the understanding of Al3+-based all-solid-state ECDs, which promote the exploration of new types of Al3+ ionic conductors for all-solid-state ECDs.  相似文献   
4.
《Ceramics International》2022,48(3):3481-3488
Ga2O3 films were deposited on Si substrates through radio-frequency magnetron sputtering at room temperature and were annealed in situ in a high-vacuum environment. The as-deposited Ga2O3 film exhibited an island-like surface morphology and had an amorphous microstructure, with a few nanocrystalline grains embedded in it. After high-temperature in situ annealing, the films recrystallized and exhibited coalesced surfaces. Because of the thermally driven diffusion of Ga, the interfacial layer between Si and Ga2O3 was composed of SiGaOx. Compared with ex situ annealing in air, in situ annealing in high vacuum is more advantageous because it enhances surface mobility and improves the crystallinity of the Ga2O3 films. The higher oxygen vacancy concentration of in situ annealed films revealed that oxygen atoms were easily released from the Ga2O3 lattice during high-vacuum annealing. Photoluminescence (PL) spectra exhibited four emission peaks centered in ultraviolet, blue, and green regions, and the peak intensities were significantly enhanced by thermal annealing at >600 °C. This work elucidates the effect of the in situ annealing treatment on the recrystallization behavior, interfacial microstructure, oxygen vacancy concentration, and PL performance of the Ga2O3 films, making it significant and instructional for the further development of Ga2O3-based devices.  相似文献   
5.
6.
The development of hydrogen purification membranes that meet market demands such as high purity, dynamic hydrogen production even at small scale, and reduced costs is still an open question. With this view, the present study aims at developing, for the first time, a method based on high power impulse magnetron sputtering for the deposition of Pd77Ag23 (wt%) films onto porous alumina substrates to achieve composite membranes with high hydrogen permeability and stability. This technique allows the deposition of films also on complex geometries and can be easily scaled up, thus making this technology a potential candidate for preparing high performing membranes. Membranes made by stable and porous alumina supports and metallic, dense and crystalline Pd77Ag23 layers, from 3.5 μm to 17 μm thick, have been prepared and tested. The membranes showed good hydrogen permeability values, showing flux values up to a maximum of 0.62 molH2 m?2 s?1 at 450 °C and ΔP of 300 kPa. The resistance to hydrogen embrittlement and the chemical inertness to syngas were also demonstrated.  相似文献   
7.
A low temperature co-fired ceramic (LTCC) material system has been used to develop a protype field emission cathode structure for use in an experimental magnetron oscillator. The structure is designed for used with 30 gated field emission array (GFEA) die electrically connected through silver metal traces and electrical vias. To approximate a cylinder, the cathode structure (48 mm long and 13.7 mm in diameter) is comprised of 10 faceted plates which cover the GFEA dies. Slits in the facet plates allow electron injection. The GFEA die (3 mm × 8 mm) are placed in axial columns of 3 and spaced azimuthally around a cylindrical support structure in a staggered configuration resulting in 10 azimuthal locations. LTCC manufacturing techniques were developed in order to fabricate the newly designed cathode with seven layers wrapped to form the cylinder with electrical traces and vias. Two different cathode wrapping techniques and two different via filling techniques were studied and compared. Two different facet plate manufacturing techniques were studied. Finally, four different support stand configurations for firing the cylindrical structure were also compared with a square post stand having the best circularity and linearity measurements of the fired structure.  相似文献   
8.
Magnetron-based gas aggregation cluster source (GAS) was used to prepare high-purity CuO (cupric oxide) nanoclusters on top of sputter-deposited thin film of tungsten trioxide (WO3). The material was assembled as a conductometric hydrogen gas sensor and its response was tested and evaluated. It is demonstrated that addition of CuO clusters noticeably enhances the sensitivity of the pure WO3 thin film. With an increasing amount of CuO clusters the sensitivity of CuO/WO3 system rises further. When CuO clusters form a sufficiently thick and compact layer, the resistance response is reversed. Based on the sensorial behavior, conventional and near-ambient pressure X-Ray photoemission spectroscopies, and resistivity measurements, we propose that the sensing mechanism is based on the formation of nano-sized p-n junctions in between p-type CuO and n-type WO3. The advantages of the GAS technique for preparing sensorial and/or catalytically active materials are emphasized.  相似文献   
9.
为获得高性能紫外激光薄膜元件,急需研制紫外高反射吸收薄膜,实现吸收损耗的精确测量。本文采用离子束溅射技术,通过调控氧气流量实现了具有不同吸收的Ta_2O_5薄膜的制备。以Ta_2O_5薄膜作为高折射率材料,设计了355nm的紫外高反射吸收薄膜。采用离子束溅射沉积技术,在熔融石英基底上制备了355nm的吸收薄膜,对于A=5%的紫外吸收光谱,在355nm的透射率、反射率和吸收率分别为0.1%,95.0%和4.9%;对于A=12%的紫外吸收光谱,在355nm的透射率、反射率和吸收率分别为0.1%,87.4%和12.5%。实验结果表明,采用离子束溅射沉积技术,可以实现不同吸收率的355nm高反射吸收薄膜的制备,对于基于光热偏转测量技术的紫外光学薄膜弱吸收测量仪的定标具有重要的意义。  相似文献   
10.
《Ceramics International》2021,47(24):34455-34462
Herein, the tungsten trioxide (WO3) nanostructure thin films with different morphologies are firstly fabricated by magnetron sputtering with glancing angle deposition technique (MS-GLAD), followed by the post annealed treatment process in air ambient for 2 h. It is demonstrated that the geometry of MS-GLAD setup, mainly substrate position, played a crucial role in determining the morphology, crystallinity, optical transmittance, and photo-electrochemical (PEC) performance of the WO3 nanostructured thin film. With the different substrate positions in the MS-GLAD system, the WO3 nanorod film layer could be precisely changed to combine an underlying dense layer with a nanorod layer and then nanocolumnar film. Moreover, the prepared samples' chemical composition and work function are studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), respectively. The combining WO3 nanostructure produced high PEC efficiency compared to the single layer of the WO3 nanorods sample and the dense WO3 thin film sample. Thus, morphology-controlled nanostructure film based on the MS-GLAD technique in our study provides a simple approach to enhance the photo-anode for PEC water splitting application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号