首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  国内免费   2篇
综合类   1篇
化学工业   3篇
金属工艺   10篇
机械仪表   3篇
建筑科学   1篇
能源动力   1篇
一般工业技术   1篇
自动化技术   1篇
  2023年   1篇
  2021年   4篇
  2017年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2006年   2篇
  2004年   2篇
  1997年   1篇
排序方式: 共有21条查询结果,搜索用时 29 毫秒
1.
目的 在AISI 300系列奥氏体不锈钢表面制备单一S相渗氮层,提高该系列不锈钢渗氮层的硬度、抗磨损性能,对比揭示渗氮前后不锈钢的磨损机制。方法 采用低温辉光等离子渗氮技术(LTPNT)在AISI 300系列奥氏体不锈钢表面制备渗氮层。利用光学显微镜(OM)、扫描电子显微镜(SEM)、电子探针(EPMA)、X射线衍射仪(XRD)分析渗氮层的截面形貌、元素分布和物相组成;通过比磨损率和磨痕形貌分析渗氮层的摩擦学性能;利用电化学实验考察渗氮前后3种不锈钢的耐蚀性。结果 AISI 300系列奥氏体不锈钢经380 ℃、12 h处理后,其表面获得了厚度为15 μm左右、与基体致密结合、组织成分均匀的渗氮层;渗氮层的相结构主要为S相,无CrN相析出;经渗氮后,该系列不锈钢表面硬度均为1 100HV左右,较基体硬度提高了5倍左右;不锈钢基体的磨损机理为黏着和磨粒磨损,经渗氮后转变为氧化磨损和微切削;渗氮层的比磨损率约为不锈钢基体的1/20,抗磨损的能力得到显著提升;在25 ℃环境温度下渗氮后,304L、316L和321的自腐蚀电位下降,腐蚀电流密度增加,腐蚀速率加快,耐腐蚀性能稍有降低。通过对比腐蚀形貌发现,渗氮层仍具有一定的耐蚀性能。结论 通过LTPNT可以获得高硬度、组织均匀致密、结合强度高的渗氮层,渗氮层中S相的存在可以显著提高AISI 300系列奥氏体不锈钢的表面硬度、抗磨损能力,降低其摩擦因数和比磨损率,对延长不锈钢的服役寿命有着积极的作用。  相似文献   
2.
The corrosion behavior of austenitic stainless steel after low-temperature liquid oxy-nitriding (LON) was investigated by exposing in H2S/CO2-saturated liquid and vapor environments up to 720 h at 60 °C. The corrosion rates before and after LON were compared by the weightlessness method, and the microstructure as well as the corrosion scales were characterized using surface analysis methods. The results indicated that the composite S-phase layer with the outer Fe3O4 layer and the inner nitrogen-rich sublayer could improve the corrosion performance in H2S/CO2-saturated environment. The base material (BM) suffered local corrosion first, which then transformed into uniform corrosion. As a comparison, The LON sample, covered with a thin corrosion product layer, indicated slight local corrosion. The excellent corrosion resistance of the S-phase should be attributed to the blocking effect of the continuous Fe3O4 film as well as the suppression of the atomic mobility by the nitrogen-containing supersaturated solid solution.  相似文献   
3.
4.
Current understanding of the mechanisms involved in osseointegration following implantation of a biomaterial has led to adhesion quantification being implemented as an assay of cytocompatibility. Such measurement can be hindered by intra-sample variation owing to morphological changes associated with the cell cycle. Here we report on a new scanning electron microscopical method for the simultaneous immunogold labelling of cellular focal adhesions and S-phase nuclei identified by BrdU incorporation. Prior to labelling, cellular membranes are removed by tritonization and antigens of non-interest blocked by serum incubation. Adhesion plaque–associated vinculin and S-phase nuclei were both separately labelled with a 1.4 nm gold colloid and visualized by subsequent colloid enhancement via silver deposition. This study is specifically concerned with the effects microgroove topographies have on adhesion formation in S-phase osteoblasts. By combining backscattered electron (BSE) imaging with secondary electron (SE) imaging it was possible to visualize S-phase nuclei and the immunogold-labelled adhesion sites in one energy 'plane' and the underlying nanotopography in another. Osteoblast adhesion to these nanotopographies was ascertained by quantification of adhesion complex formation.  相似文献   
5.
S期激酶相关蛋白2(S-phase kinase-associated protein 2,Skp2)与Skp1形成的蛋白质聚合物在调控癌细胞生长周期中发挥着重要作用,而苯并吡喃酮类抑制剂(简称BPC)可有效抑制Skp1-Skp2的形成,但其分子识别机制尚不明确.通过生物信息学统计分析已报道的Skp1-Skp2晶体结构,确定模拟体系后,首先用同源模建对其模拟体系缺失的结构进行补全;然后用分子对接方法获得Skp1-Skp2-BPC复合物模型并用于后续分子动力学模拟.计算结果表明:疏水相互作用是促使BPC特异性结合在由Skp2 W109、D110、L117、I120、R138和W139所构成口袋中的主要驱动力,自由能计算值与实验数据吻合较好.Skp2结合BPC后,结合口袋周围的氢键网络有所加强,口袋附近的溶剂化水分子数量明显减少,导致Skp1-Skp2的体系稳定性下降.体系构象成簇与运动性分析显示,Skp1-Skp2在结合BPC抑制剂后,Skp1的运动更加剧烈,这可能是BPC主要的抑制机理.  相似文献   
6.
Nuclear hormone receptor family member PPARγ plays an important role in mammary gland tumorigenesis. Previous studies have shown PPARγ has cytoplasmic activities upon tetradecanoyl phorbol acetate (TPA) stimulation. However, the clinical pathological significance of cytoplasmic PPARγ is not completely understood in human breast cancer. Skp2 is oncogenic, and its frequent amplification and overexpression correlated with the grade of malignancy. In this study, the role of cytoplasmic PPARγ and Skp2 expression was investigated in human breast cancer progression. Therefore, immunohistochemical analysis was performed on formalin-fixed paraffin sections of 70 specimens. Furthermore, Western blot and immunofluorescence microscopy analysis were used to study the relationship between expression of cytoplasmic PPARγ and Skp2 expression in human breast cancer cells in vitro. Results showed that the expression of cytoplasmic PPARγ was positively correlated with Skp2 expression (p < 0.05), and correlated significantly with estrogen receptor (p = 0.026) and pathological grade (p = 0.029), respectively. In addition, Skp2 overexpression can provoke cytoplasmic localization of PPARγ upon MEK1-dependent mechanisms in human breast cancer cells by nuclear-cytosolic fractionation technology and immunofluorescence microscopy analysis. Using RNA interference technology, we also found that down-regulated Skp2 reduced the phosphorylation level of MEK1 and significantly reversed TPA-induced nuclear export of PPARγ in MDA-MB-231 cells. The changes in the subcellular localization of PPARγ may represent a novel target for selective interference in patients with breast cancer.  相似文献   
7.
304 不锈钢低温离子渗氮及氮碳共渗处理   总被引:1,自引:1,他引:0  
缪跃琼  林晨  高玉新  郑少梅  程虎 《表面技术》2015,44(8):61-64,102
目的研究304不锈钢离子渗氮层和氮碳共渗层的组织、硬度及耐磨、耐蚀性能,并考察渗层的磨损机理。方法利用离子渗氮及氮碳共渗工艺在304不锈钢表面获得硬化层,利用XRD,OM及共聚焦显微镜、显微硬度仪、电化学测试仪,分析处理前后渗层的组织、相结构及渗层的硬度及耐磨耐蚀性能。结果 304不锈钢氮碳共渗和渗氮层主要为S相层,在相同工艺条件下,氮碳共渗工艺获得的渗层为γN+γC的复合渗层,且厚度大于单一渗氮层。渗氮层和氮碳共渗层硬度约为基体硬度的3.5倍。在干滑动摩擦条件下,氮碳共渗层比渗氮层具有更好的耐磨性能;渗氮层的磨损机理为磨粒磨损的犁沟效应和断裂,氮碳共渗层的磨损机理为磨粒磨损的犁沟和微切削。电化学测试表明,渗氮层和氮碳共渗层的耐蚀性能均优于基体。结论 304不锈钢在420℃进行离子渗氮和氮碳共渗处理后,硬度和耐磨性能可大幅提高,且氮碳共渗处理效果更佳。  相似文献   
8.
Glow-discharge nitriding treatments can modify the hardness and the corrosion resistance properties of austenitic stainless steels. The modified layer characteristics mainly depend on the treatment temperature. In the present paper the results relative to glow-discharge nitriding treatments carried out on AISI 316L austenitic stainless steel samples at temperatures ranging from 673 to 773 K are reported. Treated and untreated samples were characterized by means of microstructural and morphological analysis, surface microhardness measurements and corrosion tests in NaCl solutions. The electrochemical characterization was carried out by means of linear polarizations, free corrosion potential-time curves and prolonged crevice corrosion tests. Nitriding treatments performed at higher temperatures (>723 K) can largely increase the surface hardness of AISI 316L stainless steel samples, but decrease the corrosion resistance properties due to the CrN precipitation. Nevertheless nitriding treatments performed at lower temperatures (?723 K) avoid a large CrN precipitation and allow to produce modified layers essentially composed by a nitrogen super-saturated austenitic metastable phase (S-phase) that shows high hardness and very high pitting and crevice corrosion resistance; at the same polarization potentials the anodic current density values are reduced up to three orders of magnitude in comparison with untreated samples and no crevice corrosion event can be detected after 60 days of immersion in 10% NaCl solution at 328 K.  相似文献   
9.
Peter A. Dearnley 《Wear》2004,256(5):491-499
Austenitic stainless steels like 316L are amongst the most commonly selected structural alloys for use in corrosion environments. Unfortunately, their resistance to surface degradation caused during sliding contacts with other materials, in such environments is poor. Here, a synergistic combination of mechanical (wear) and chemical (corrosion) processes, known as corrosion-wear processes, are responsible for causing surface material loss. Accordingly, efforts are being made to identify surface treatments that can enhance the corrosion-wear resistance of 316L and similar alloys. One plausible solution is to apply thin hard coatings (∼5-10 μm thick) using various plasma-based technologies. In practice, this is often fraught with difficulty because of the complex nature of the pervading corrosion-wear mechanisms. This paper presents our recent work that has identified three major corrosion-wear mechanisms that must be minimised if a successful surface engineering design is to be achieved for corrosion-wear protection. These are: Type I—the removal of the coating passive film during sliding contact; Type II—galvanic attack of the substrate resulting in blistering of the coating and; Type III—galvanic attack of the counterface material leading to abrasion of the coating during subsequent sliding contact.  相似文献   
10.
Following the success of forming a carbon S-phase (expanded austenite) surface layer on medical grade Ni-free austenitic stainless steel by DC plasma carburising, the established commercial carburising process Kolsterising® was performed on both Ni-containing (AISI 304) and Ni-free austenitic stainless steels. While the Ni-containing stainless steel responded very well to Kolsterising®, the Ni-free alloy did not. The carbon absorption and the hardness of the Kolsterised® Ni-free alloy are inferior to Kolsterised® AISI 304 Ni-containing stainless steel, however, the hardness of the untreated Ni-free alloy was doubled by Kolsterising®. The response of both Kolsterised® Ni-free and Ni-containing alloys to pitting, crevice corrosion and intergranular corrosion resistance was similar. From this work it can be concluded that the Kolsterised® austenitic stainless steels do not suffer from intergranular corrosion but are susceptible to intragranular pitting when tested in boiling sulphuric acid and copper sulphate solution. It was also observed that Kolsterising® improves significantly the pitting and crevice corrosion resistance of the alloys used in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号