首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   2篇
  国内免费   11篇
电工技术   27篇
综合类   1篇
化学工业   106篇
金属工艺   13篇
建筑科学   11篇
能源动力   7篇
轻工业   1篇
石油天然气   8篇
无线电   20篇
一般工业技术   55篇
冶金工业   1篇
原子能技术   2篇
自动化技术   30篇
  2023年   7篇
  2022年   12篇
  2021年   12篇
  2020年   14篇
  2019年   6篇
  2018年   16篇
  2017年   16篇
  2016年   8篇
  2015年   22篇
  2014年   12篇
  2013年   14篇
  2012年   17篇
  2011年   24篇
  2010年   16篇
  2009年   20篇
  2008年   12篇
  2007年   12篇
  2006年   9篇
  2005年   4篇
  2004年   11篇
  2003年   2篇
  2001年   2篇
  1999年   6篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
排序方式: 共有282条查询结果,搜索用时 15 毫秒
1.
The hydrogel electrolyte is an important part of safety and development potential in zinc-based energy storage equipment due to its inherent low mechanical strength and voltage decomposition. However, hydrogel electrolytes possess a reduced working life for zinc dendrites growth and a narrow voltage window. In this study, a hydrogel electrolyte prepares by the zwitterionic monomer [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) (MS) and sodium alginate (SA) alleviate these problems. The zwitterionic double-network hydrogel has good mechanical strength, inhibits the growth of zinc dendrites, enhances practicability, greatly increases the voltage window (0–2.4 V), and has self-healing properties to its rich functional groups. The assembled zinc-ion hybrid supercapacitors (ZHSs) have a high-power density of 172.33 W kg?1 and an energy density of 88.56 Wh·kg?1 at 0.5 A g?1. The assembled zinc-ion battery also has good electrochemical performance. Flexible ZHSs and batteries provide power to the timer stably under different bending angles. The zwitterionic double-network hydrogel can be applied to both zinc-based supercapacitors and batteries.  相似文献   
2.
《Ceramics International》2022,48(14):19851-19863
This study aims to develop multifunctionality of cementitious composites with the integrated self-sensing and self-healing capacities by incorporating conductive carbon black (CB) with CB-encapsulated slaked lime (SL). The microsized SL particles were premixed with a half of designed content of nanosized CB particles. When CB agglomerations coat around the SL surfaces, SL does not hydrate until the CB coating is removed. Another half of designed weight of CB is uniformly dispersed using ultrasonication with superplasticizer and added to obtain piezoresistivity. The results show that the stress sensing capacity of CB-SL-cementitious composite performs well with the compressive stress. Autogenous healing performances presented significantly can improve the self-healing capacity with the increase of SL. Furthermore, the healing efficiency is affected by the crack width and dispersion of SL, and the smaller cracks with SL are more easily healed. The size of CB agglomerations decreases with the added SL, and the main product of self-healing is calcium carbonate.  相似文献   
3.
Poor antioxidant and thermal-shock capacities of C/C composites thermal barrier coating (TBC) caused by cracking and shedding of coatings has been a major obstacle blocking the development of C/C composites. Herein, in-situ growth of whisker reinforced silicon carbide transition layer and inter-embedding mechanism of multi-gradient coatings were brought into the design of TBC to enhance the antioxidant and thermal-shock capacities. A three-layer gradient coating SiC-SiCw/ZrB2-SiC/ZrSiO4-aluminosilicate glass (ZAG) from inside to outside, in which ZrB2-SiC/ZAG serve as oxygen barrier layers with self-healing ability and SiC-SiCw provides thermal stress buffering and bonding against cracking and shedding of coatings, is designed. The ZAG mainly forms a dense oxygen blocking frontier with self-healing ability through fluidized glass, while the ZrB2-SiC can react actively with infiltrated oxygen in a way of self-sacrifice, preventing oxygen erosion to C/C matrix and SiC-SiCw transition layer. As a result, the collaborative work among layers endows this coating with excellent high temperature service performance. This work provides a new insight for the design of excellent TBC.  相似文献   
4.
In this research, Suspension Plasma Spraying (SPS) technique was used for the thermal deposition of a multicomponent mixture made up of an Y-TZP/Al2O3 matrix with SiC particles. Two suspensions of Y-TZP and Al2O3 with different SiC particles content (6?wt% and 12?wt%) were tested as feedstocks in the SPS process. Three stand-off distances were varied in order to assess coating microstructure and evaluate the presence of SiC in the final coatings. Coatings were characterised in terms of porosity, microstructure and phase distribution. The estimate of the amount of SiC in the coating was carried out by XRD technique.Findings showed typical cauliflower-like SPS microstructure which intensifies with stand-off distance. Coatings porosity varied significantly between 8% and 25% whereas minimum porosity was found for the intermedium stand-off distance of 40?mm.Microstructure analysis also revealed the presence of SiC particles in the coatings which was confirmed by EDX analysis, overall XRD tests as well as TG analysis. Finally, evaluation of SiC content in the final coatings by means of XRD analysis showed that most of SiC particles (c.a 80%) of the feedstocks were preserved in the final coatings.  相似文献   
5.
In order to obtain thermal barrier coatings by Suspension Plasma Spraying (SPS) process with potential new self-healing ability multicomponent submicronic Y-TZP/Al2O3/SiC suspensions were prepared. For this purpose, concentrated aqueous suspensions of individual components, as well as the multicomponent mixture were studied and characterised, in terms of colloidal stability and rheological behaviour to determine the best conditions for processing and preparation of the coatings. In the study, different dispersant contents and sonication times were tested. Subsequently, low concentrated suspensions were prepared to obtain preliminary thermal barrier coatings with the optimised feedstock. Thus, ceramic coatings were deposited by SPS and then characterised in order to assess the microstructure and phase distribution, in particular, the degree of preservation of the sealing agent, SiC, in the final coating as a previous indicator of its self-healing ability.  相似文献   
6.
Self-healing is a smart and promising way to make materials more reliable and longer lasting. In the case of structural or functional composites based on a polymer matrix, very often mechanical damage in the polymer matrix or debonding at the matrix–filler interface is responsible for the decrease in intended properties. This review describes the healing behavior in structural and functional polymer composites with a so-called intrinsically self-healing polymer as the continuous matrix. A clear similarity in the healing of structural and functional properties is demonstrated which can ultimately lead to the design of polymer composites that autonomously restore multiple properties using the same self-healing mechanism.  相似文献   
7.
The brittleness of MoSi2 ceramic and the thermal mismatch between MoSi2 coating and C / C composite lead to brittle cracking of the coating at 900−1200 °C. This problem has been overcome in this studyby introducing submicron-SiB6 into the coating. The pre-fabricated cracks and a kinetics model of hot-pressed SiB6-MoSi2 ceramic could quantitatively predict the glass growth and crack healing. As expected, enhancing temperature and SiB6 content increased the growth rate of the borosilicate glass and the crack healing ability of MoSi2 ceramic, which was ascribed to the lower oxidation activation energy and larger specific surface area of submicron-SiB6. For the plasma sprayed coating, SiB6 with submicron structure was benefit for cracking inhibition and formation of borosilicate glass during oxidation, reducing the oxygen permeability and the consumption of inner coating. Hence, the 15 % SiB6-MoSi2 coatings raised the protection times to 84 and 120 h at 900 and 1200 °C respectively, presenting favorable oxidation protective performance.  相似文献   
8.
Inspired by biological systems in which damage triggers an autonomic healing response, a polymer composite material that can heal itself when cracked has been developed. In this work, compression and tensile properties of a self-healed fibre reinforced epoxy composites were investigated. Microencapsulated epoxy and mercaptan healing agents were incorporated into a glass fibre reinforced epoxy matrix to produce a polymer composite capable of self-healing. The self-repair microcapsules in the epoxy resin would break as a result of microcrack expansion in the matrix, and letting out the strong repair agent to recover the mechanical strength with a relative healing efficiency of up to 140% which is a ratio of healed property value to initial property value or healing efficiency up to 119% if using the healed strength with the damaged strength.  相似文献   
9.
Geosynthetic clay liners (GCLs), which have a very low permeability to water and a considerably high self-healing capacity, are widely used in liner systems of landfills. In this study, a series of experimental tests were carried out under complex conditions on typical commercial GCLs from China. In particular, the effects of pH values and lead ions (Pb2+) were tested in addition to other factors. The swelling properties of natural bentonite encapsulated between geotextile components in the GCLs were tested first. The swelling capacity was reduced rapidly at pH values < 3 and concentrations of Pb2+ >40 mM. Permeability tests on GCLs with different concentrations of lead ions were then performed by using the self-developed multi-link flexible wall permeameter, and data showed that increases in lead ion concentrations greatly improved the permeability. Finally, self-healing capacity tests were conducted on needle-punched GCLs under different levels of damage. Results showed that the GCLs have a good self-healing capacity with small diameter damage holes (2 mm, close to three times the original aperture), but with a damage aperture larger than 15% of the sample area, the self-healing capacity could not prevent leakage; hence, in certain situations it will be necessary to repair the damage to meet the anti-seepage requirement.  相似文献   
10.
《Ceramics International》2022,48(21):31738-31745
In this study, novel polyborosilazane-derived SiBCN(O) ceramic was used as self-healing component in self-healing Cf/SiBCN(O) composite, which was prepared by polymer infiltration and pyrolysis (PIP) process. Molecular-level structure design of boron-containing ceramic precursors was utilized to achieve uniform dispersion of boron-containing self-healing components in prepared composites. No elemental diffusion was observed at the interface of ceramic matrix and carbon fibers, which resulted in stable SiBCN(O) structure. In addition, boron was uniformly distributed in Cf/SiBCN(O) composite ceramic matrix, which was beneficial for self-healing of cracks. Cracks and indentations were able to heal at high temperatures in air. The best crack-healing behavior occurred in air atmosphere at 1000 °C, with nearly complete crack healing. This excellent self-healing behavior was achieved because silicon and boron atoms in SiBCN(O) ceramic reacted with available oxygen at high temperatures to form SiO2(l), B2O3(l), and B2O3·xSiO2 liquid phases, which effectively filled cracks. In general, as-prepared Cf/SiBCN(O) composite exhibited excellent self-healing properties and shows great application potential in high-temperature environment applications such as aviation, aerospace, and nuclear power.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号