首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1093篇
  免费   0篇
  国内免费   8篇
电工技术   3篇
化学工业   39篇
金属工艺   72篇
机械仪表   3篇
建筑科学   1篇
能源动力   31篇
无线电   126篇
一般工业技术   811篇
冶金工业   2篇
原子能技术   6篇
自动化技术   7篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2019年   5篇
  2018年   4篇
  2017年   9篇
  2016年   17篇
  2015年   11篇
  2014年   51篇
  2013年   71篇
  2012年   48篇
  2011年   156篇
  2010年   117篇
  2009年   119篇
  2008年   114篇
  2007年   139篇
  2006年   48篇
  2005年   45篇
  2004年   17篇
  2003年   30篇
  2002年   26篇
  2001年   6篇
  2000年   7篇
  1999年   4篇
  1998年   2篇
  1997年   7篇
  1996年   12篇
  1995年   11篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有1101条查询结果,搜索用时 15 毫秒
1.
The n-type thermoelectric Bi1.9Lu0.1Te3 was prepared by microwave-solvothermal method and spark plasma sintering. The magnetic field and temperature dependences of transverse magnetoresistance measured within temperature 2–200 K interval allow finding the peculiarities characteristic for strongly disordered and inhomogeneous semiconductors. The first peculiarity is due to appearance of linear-in-magnetic field contribution to the total magnetoresistance reflected in a crossover from quadratic magnetoresistance at low magnetic fields to linear magnetoresistance at high magnetic fields. The linear magnetoresistance can result from the Hall resistance picked up from macroscopically distorted current paths due to local variations in stoichiometry of the compound studied. The second peculiarity is that both linear magnetoresistance magnitude and crossover field are functions of carrier mobility which is in agreement with the Parish and Littlewood model developed for disordered and inhomogeneous semiconductors. An increase in the mobility due to a decrease in temperature is accompanied by an increase in the magnetoresistance magnitude and a decrease in the crossover field. Finally, the third peculiarity is related to the remarkable deviation of the total magnetoresistance measured at various temperatures from the Kohler's rule. Presence of strong inhomogeneity and disorder in the Bi1.9Lu0.1Te3 structure concluded from the magnetoresistance peculiarities can be responsible for the remarkable reduction in the total thermal conductivity of this compound.  相似文献   
2.
Properties such as crystalline structure (X-ray diffraction – XRD), surface chemistry–electronic states (X-ray photoelectron spectroscopy – XPS), morphology and particle size-distribution (Transmission Electron Microscopy – TEM), electronic structure-band-gap (UV–vis spectroscopy) and surface area (BET-nitrogen physisorption) were analyzed for titanium dioxide (TiO2)-semiconductor-surfaces synthesized by sol–gel route using nitric, acetic and phosphoric acids as hydrolysis precursors. According to XRD analysis, it was established that anatase phase has been obtained with a particle size linked to the acid of hydrolysis employed (i.e. dissociation constant), as also demonstrated by TEM and area BET. On the other hand, using XPS, a shift toward lower binding energies was observed from TiO2 obtained using HNO3 promoting some structural modification and the reduction in the band-gap, inducing a better faradic current-performance by decreasing charge-transfer resistance during polarization and at induced-generated photocurrent using UV-light.  相似文献   
3.
Thin films of CdSe and silver(Ag)-doped CdSe have been prepared on glass substrates by thermal evaporation in argon gas atmosphere. X-ray diffraction pattern indicates the presence of hexagonal structure with preferred orientation along (100) plane. Elemental composition of the thin films has been analyzed using energy dispersive X-ray analysis. Scanning electron microscopy has been used to investigate the morphology of the thin films. Transmission electron microscope reveals spherical nature of nanoparticles. A decrease in the band gap due to the formation of band tails in the band gap with increase in Ag doping in CdSe lattice has been observed. Photoluminescence spectra indicate redshift in band edge emission peak with increase in Ag doping in CdSe. Electrical conductivity measurements are also studied, and two types of conduction mechanisms taking part in the transport phenomena are observed. Hall measurements indicate n-type behavior of undoped and Ag-doped CdSe thin films.  相似文献   
4.
In this paper, Ohmic-like contact on n-type GaSb with on/off-current ratio of 1.64 is presented, which is formed at 500 °C by inserting IGZO between metal (Ni) and GaSb. The resulting Ohmic contact is systematically investigated by TOF-SIMS, HSC chemistry simulation, XPS, TEM, AFM, and JV measurements. Two main factors contributing to the Ohmic contact formation are (1) InSb (or InGaSb) with narrow energy bandgap (providing low electron and hole barrier heights) formed by In diffusion from IGZO and Sb released by Ga oxidation, and (2) free Sb working as traps that induces tunneling current.  相似文献   
5.
In the present work, anatase TiO2 films are prepared by sol–gel spin coating method. The structural and optical properties of the films have been studied at different post-annealing temperatures. The photocatalytic activity and electrochromic performance of the films are investigated. The films annealed at 400 °C exhibit the highest photocatalytic activity with a rate constant of 4.56×10−3 min−1. The electrochromic performance for the films annealed at 400 °C expressed in terms of difference in optical density (ΔOD) at 550 nm between coloured and bleached state is 0.5493. This combination of photocatalysis and electrochromism makes the sol–gel derived titania thin films as promising candidates for self-cleaning smart window applications.  相似文献   
6.
Photocatalytic performance of four tetracycline antibiotics using BiVO4/TiO2/RGO composites was investigated. To make full use of catalysis, optimum preparation conditions involved RGO content, solution pH and hydrothermal temperature on the structure forming of BiVO4/TiO2/RGO composites were investigated. Subsequently, the obtained visible light-driven photocatalyst was used to degrade four kinds of tetracycline antibiotics involved tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC) and doxycycline (DXC) for wastewater treatment. Results showed that BiVO4/TiO2/RGO photocatalyst exhibited excellent photocatalytic activity and high compatibility due to the enhanced separation efficiency of photo-generated carriers with high reduction and oxidation capability. The degradation process of four kinds of tetracycline antibiotics was traced and detected through identifying intermediates produced in the reaction system. And a possible catalytic mechanism for BiVO4/TiO2/RGO photocatalyst was put forward based on band gap structure of BiVO4 and TiO2.  相似文献   
7.
After a short introduction we will highlight processing issues (setup, comparison of annealing methods, relevant requirements for annealing due to doping, diffusion, activation, recrystallization, defect engineering), as well as doping issues for group IV-semiconductors (shallow junctions, hyperdoping, solar cells, superconductivity) and other semiconductors (manganese doping of GaAs for diluted magnetic semiconductors, doping for transparent conductive oxides). Mostly ion implantation serves as a source of dopants, but also diffusion from deposited layers is of growing importance.  相似文献   
8.
Luminescence of CdTe quantum dots embedded in ZnTe is quenched at pressure of about 4.5 GPa in the high-pressure experiments. This pressure-induced quenching is attributed to the “zinc-blende–cinnabar” phase transition in CdTe, which was confirmed by the first-principles calculations. Theoretical analysis of the pressure at which the phase transition occurs for CdTe was performed using the CASTEP module of Materials Studio package with both generalized gradient approximation (GGA) and local density approximation (LDA). The calculated phase transition pressures are equal to about 4.4 GPa and 2.6 GPa, according to the GGA and LDA calculations, respectively, which is in a good agreement with the experimental value. Theoretically estimated value of the pressure coefficient of the band-gap luminescence in zinc-blende structure is in very good agreement with that recently measured in the QDs structures. The calculated Debye temperature, elastic constants and specific heat capacity for the zinc-blend structure agree well with the experimental data; the data for the cinnabar phase are reported here for the first time to the best of the authors' knowledge.  相似文献   
9.
Stacked CdTe/Zn/CdTe layers were deposited on glass substrates. The vacuum-evaporated thin films were subsequently annealed in vacuum ambience at various temperatures. Change in lattice-constant of major Cd1−xZnxTe planes against temperature was plotted from the XRD results. The graphs followed sigmoid-growth model and were regressed well by standard Boltzmann and Logistic functions. Lattice-constant varied maximum in between 375–400 °C and 425–450 °C, giving two separate growth trends. Optical studies suggested that presence of charge impurities and defects reduced the transmittance and band-gap values of the samples. Such reduction occurred, despite of greater formation of Cd1−xZnxTe. Decreasing granularity was however associated with increasing band-gap for samples annealed at 425 and 450 °C. SEM micrographs showed that granularity decreased significantly for samples annealed at higher temperatures. EDX results were further used to co-relate the compositional characteristics with structural and optical features.  相似文献   
10.
DFT is used to study various transition metal based ceramics LiAA′O6 (A = Nb, Ta, and A′ = W, Mo) in tetragonal phase with space group 421 m (No. 113). The calculated structural and geometrical parameters are found in closed agreement with the experiments. Electronic clouds explain the chemical bonding and reveal that Li atom occupy central position and form ionic bond. Other bonds in these compounds are significantly covalent due to the sharing of electrons between O and A/A′. The electronic properties demonstrate that these compounds are wide bandgap semiconductors in the energy range of 2.18–2.60 eV. These bandgap energies confirm the suitability of these oxides in optoelectronic devices operating in the visible range of the electromagnetic spectrum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号