首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41355篇
  免费   4982篇
  国内免费   1801篇
电工技术   1169篇
技术理论   8篇
综合类   2287篇
化学工业   15908篇
金属工艺   2822篇
机械仪表   908篇
建筑科学   2256篇
矿业工程   804篇
能源动力   2593篇
轻工业   1971篇
水利工程   289篇
石油天然气   2089篇
武器工业   153篇
无线电   2046篇
一般工业技术   9323篇
冶金工业   2584篇
原子能技术   363篇
自动化技术   565篇
  2024年   102篇
  2023年   987篇
  2022年   1366篇
  2021年   1574篇
  2020年   1622篇
  2019年   1462篇
  2018年   1326篇
  2017年   1577篇
  2016年   1562篇
  2015年   1503篇
  2014年   2328篇
  2013年   2514篇
  2012年   3015篇
  2011年   3421篇
  2010年   2558篇
  2009年   2585篇
  2008年   2033篇
  2007年   2504篇
  2006年   2607篇
  2005年   2124篇
  2004年   1756篇
  2003年   1588篇
  2002年   1215篇
  2001年   863篇
  2000年   743篇
  1999年   573篇
  1998年   499篇
  1997年   348篇
  1996年   317篇
  1995年   273篇
  1994年   249篇
  1993年   178篇
  1992年   145篇
  1991年   114篇
  1990年   105篇
  1989年   58篇
  1988年   42篇
  1987年   47篇
  1986年   30篇
  1985年   57篇
  1984年   46篇
  1983年   45篇
  1982年   25篇
  1981年   4篇
  1980年   13篇
  1977年   2篇
  1976年   4篇
  1963年   1篇
  1959年   5篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
Carbon monoxide (CO)—gaseous or released by CO-RMs—both possess antiplatelet properties; however, it remains uncertain whether the mechanisms involved are the same. Here, we characterise the involvement of soluble guanylate cyclase (sGC) in the effects of CO—delivered by gaseous CO–saturated buffer (COG) and generated by CORM-A1—on platelet aggregation and energy metabolism, as well as on vasodilatation in aorta, using light transmission aggregometry, Seahorse XFe technique, and wire myography, respectively. ODQ completely prevented the inhibitory effect of COG on platelet aggregation, but did not modify antiplatelet effect of CORM-A1. In turn, COG did not affect, whereas CORM-A1 substantially inhibited energy metabolism in platelets. Even though activation of sGC by BAY 41-2272 or BAY 58-2667 inhibited significantly platelet aggregation, their effects on energy metabolism in platelets were absent or weak and could not contribute to antiplatelet effects of sGC activation. In contrast, vasodilatation of murine aortic rings, induced either by COG or CORM-A1, was dependent on sGC. We conclude that the source (COG vs. CORM-A1) and kinetics (rapid vs. slow) of CO delivery represent key determinants of the mechanism of antiplatelet action of CO, involving either impairment of energy metabolism or activation of sGG.  相似文献   
2.
Microbiologically influenced corrosion induced by bacteria has been studied for many years. Corrosion is known to be sensitive to the presence of microalgae, such as Phaeodactylum tricornutum. However, the life activity of P. tricornutum that influences the general and localized corrosion of carbon steel is not fully understood. The current study uses a combination of immersion tests and electrochemical experiments with a detailed surface characterization to reveal the naturally formed corrosion products with/without the presence of P. tricornutum. The results show that samples suffer from pitting corrosion and the averaged pit depths are approximately 15 μm under a light–dark cycle condition or a 24-h constant light condition. Meanwhile, the corrosion products are mainly comprised of γ-FeOOH and Fe3O4 in a constant light condition. However, γ-FeOOH, Fe3O4, and FeCO3 are found in a light–dark cycle. This study proposes the fundamental mechanisms of the effect of P. tricornutum life activities on the corrosion performance of Q235 carbon steel, to fulfill the knowledge gaps of the presence of microalgae inducing the general and pitting corrosion of carbon steel.  相似文献   
3.
With the blossom of information industry, electromagnetic wave technology shows increasingly potential in many fields. Nevertheless, the trouble caused by electromagnetic waves has also drawn extensive attention. For instance, electromagnetic pollution can threaten information safety in vital fields and the normal function of delicate electronic devices. Consequently, electromagnetic pollution and interference become an urgent issue that needs to be addressed. Carbon nanotubes (CNTs) have become a potential candidate to deal with these problems due to many advantages, such as high dielectric loss, remarkable thermodynamic stability, and low density. With the appearance of climbing demands, however, the carbon nanotubes combining various composites have shown greater prospects than the single CNTs in microwave absorbing materials. In this short review, recent advances in CNTs-based microwave absorbing materials were comprehensively discussed. Typically, we introduced the electromagnetic wave absorption mechanism of CNTs-based microwave absorbing materials and generalized the development of CNTs-based microwave absorbers, including CNTs-based magnetic metal composites, CNTs-based ferrite composites, and CNTs-based polymer composites. Ultimately, the growing trend and bottleneck of CNTs-based composites for microwave absorption were analyzed to provide some available ideas to more scientific workers.  相似文献   
4.
The effects of particle size and carbon dioxide concentration on chemical conversion in engineered spherical particles undergoing calcium oxide looping are investigated. Particles are thermochemically cycled in a furnace under different carbon dioxide concentrations. Changes in composition due to chemical reactions are measured using thermogravimetric analysis. Gas composition at the furnace exit is evaluated with mass spectroscopy. A numerical model of thermal transport phenomena developed previously is adapted to match the physical system investigated in the present study. The model is used to elucidate effects of reacting medium characteristics on particle temperature and reaction extent. Experimental and numerical results show that (1) an increase in particle size results in a decrease in carbonation extent, and (2) the carbonation step consists of fast and slow reaction regimes. The reaction rates in the fast and slow carbonation regimes increase with increasing carbon dioxide concentration. The effect of carbon dioxide concentration and the distinction between the fast and slow regimes become more pronounced with increasing particle size.  相似文献   
5.
A novel carbon/m-HNTs composite aerogel was synthesized by introducing the modified halloysite nanotubes (m-HNTs) into phenolic (PR) aerogels through chemical grafting, followed with carbonization treatment. In order to explore the best proportion of HNTs to phenolic, the micromorphology of PR/m-HNTs were investigated by SEM before carbonization, confirming 10 wt% of m-HNTs is most beneficial to the porous network of aerogels. The interaction between PR and HNTs was studied by FTIR spectra, and microstructure evolution of the target product-carbon/m-HNTs composite aerogel were illustrated by SEM and TEM techniques. SEM patterns indicated that the carbon/m-HNTs aerogels maintain a stable porous structure at 1000 °C (carbonization temperature), while a ~20 nm carbon layer was formed around m-HNTs generating an integral unit through TEM analysis. Specific surface area and pore size distribution of composite aerogels were analyzed based on mercury intrusion porosimetry and N2 adsorption–desorption method, the obtained results stayed around 500 m2g?1 and 1.00 cm3g?1 (pore volume) without significant discrepancy, compared with pure aerogel, showing the uniformity of pore size. The weight loss rate (26.76%) decreased greatly compared with pure aerogel, at the same time, the best volumetric shrinkage rate was only 30.83%, contributed by the existence of HNTs supporting the neighbor structure to avoid over-shrinking. The highest compressive strength reached to 4.43 MPa, while the data of pure aerogel was only 1.52 MPa, demonstrating the excellent mechanical property of carbon/m-HNTs aerogels.  相似文献   
6.
All-solid-state lithium batteries(ASSLB) are promising candidates for next-generation energy storage devices.Nevertheless,the large-scale commercial application of high energy density AS S LB with the polymer electrolyte still faces challenges.In this study,a thin solid polymer composite electrolyte(SPCE) is prepared through a facile and cost-effective strategy with an infiltration of thermoplastic polyurethane(TPU),lithium salt(LiTFSI or LiFSI),and halloysite nanotubes(HNTs) in a porous framework of polyethylene separator(PE)(TPU-HNTs-LiTFSI-PE or TPU-HNTs-LiFSI-PE).The composition,electrochemical performance,and especially the effect of anions(TFSI~-and FSI~-) on cycling performance are investigated.The results reveal that the flexible TPU-HNTs-LiTFSI-PE and TPU-HNTs-LiFSI-PE with a thickness of 34 μm exhibit wide electrochemical windows of 4.9 and 5.1 V(vs.Li+/Li) at 60℃,respectively.Reduction in FSI~-tends to form more LiF and sulfur compounds at the interface between TPU-HNTs-LiFSI-PE and Li metal anode,thus enhancing the interfacial stability.As a result,cell composed of TPU-HNTs-LiFSI-PE exhibits a smaller increase in interfacial resistance of solid electrolyte interphase(SEI) with a distinct decrease in charge-transfer resistance during cycling.Li|Li symmetric cell with TPU-HNTs-LiFSI-PE could keep its stable overpotential profile for nearly 1300 h with a low hysteresis of approximately39 mV at a current density of 0.1 mA cm~(-2),while a sudden voltage rise with internal cell impedance-surge signals was observed within 600 h for cell composed of TPU-HNTs-LiTFSI-PE.The initial capacities of NCMITPU-HNTs-LiTFSIPEILi and NCMITPU-HNTs-LiFSI-PEILi cells were 149 and 114 mAh g~(-1),with capacity retention rates of 83.52% and89.99% after 300 cycles at 0.5 C,respectively.This study provides a valuable guideline for designing flexible SPCE,which shows great application prospect in the practice of ASSLB.  相似文献   
7.
The electromagnetic materials are featured by good magnetic permeability and dielectric constant characteristics, which are of significant importance in solving the pollution problem of electromagnetic. In this study, after the complete of the use of sol-gel method, argon gas was then introduced for calcination, and eventually a new type of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4 composites was synthesized after the above mentioned procedures. The synthesized MWCNTs were able to be adsorbed on the surface of Ni0.5Zn0.5Nd0.04Fe1.96O4 and could form a good conductive work of 3D. Also, the effect of additional MWCNTs on microwave absorption properties of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4 composites were also observed in this study. The results indicate that the additional MWCNTs function to significantly improve the microwave absorption property of MWCNTs/Ni0.5Zn0.5Nd0.04Fe1.96O4. Through altering the amount of MWCNTs, the microwave attenuation performance and impedance matching coefficient of this electromagnetic materials can be effectively improved. The S2 sample presented a minimum reflection loss of ?35.05 dB when its thickness reached 1.6 mm, meanwhile, the effective absorption bandwidth achieved 4.55 GHz. The prepared composites perform well in microwave absorption, which can attribute to the reasonable ratio of composites as well as its interaction with both of the magnetic and dielectric components. This research paved the way for novel ideas to be put in the electromagnetic absorption materials with high-efficient.  相似文献   
8.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
9.
Technical development in electronic devices is frequently stifled by their insufficient capacity and cyclic stability of energy-storage devices. The nano-structured materials have sensational importance for providing novel and optimized combination to overcome exiting boundaries and provide efficient energy storage systems. Metal hydroxide materials with high capacity for pseudo-capacitance properties have grabbed special attention. Lately, the blend of nickel and cobalt hydroxides has been considered as a favorable class of metallic hydroxide materials owing to their comparatively high capacitance and exceptional redox reversibility. The sulfonated carbon nanotube fluid (SCNTF) was prepared by the ion exchange method to be utilized as the exceptional templates due to astonishing specific surface area, ensuring the maximum utilization of the active material. The CoNi-layered double hydroxides (LDHs)/SCNTF core-shell nanocomposite was prepared by the simple solvothermal method. Structural analysis showed that the composite material had the high conductance of carbon materials, the pseudo-capacitance characteristics of metal hydroxides, and porous structure, which facilitates the ion shuttle when the electrolyte reacts with the active material. Electrochemical analysis results showed that CoNi-LDHs/SCNTF had excellent rate performance, reversible charge-discharge properties and cycle stability. It exhibited an extreme specific capacity of 1190.5 F g?1 at a current density of 1 A g?1; whereas specific capacity remained 953.7 F g?1 at the current density was 10 A g?1. In addition, the capacity retention rate after 5000 charge-discharge cycles at a current density of 20 A g?1 was 81.0%. The results indicated that the CoNi-LDHs/SCNTF core-shell nanocomposite material is cost efficient and an effective substitute in energy storage applications.  相似文献   
10.
The through-thickness conductivity of carbon fiber reinforced polymer (CFRP) composite was increased by incorporating multiwalled carbon nanotubes in the interlaminar region. Carbon nanotubes (CNTs) were dispersed in a polyethylenimine (PEI) binder, which was then coated onto the carbon fiber fabric. Standard vacuum-assisted resin infusion process was applied to fabricate the composite laminates. This modification technique aims to enhance the electrical conductivity in through-thickness direction for the purpose of nondestructive testing, damage detection, and electromagnetic interference shielding. CNT concentrations ranging from 0 to 0.75 wt% were used and compared to pristine CFRP samples (reference). The through-thickness conductivity of the CFRP exhibited an improvement of up to 781% by adopting this technique. However, the dispersion of CNT in PEI led to a viscosity increase and poor wetting properties which resulted in the formation of voids/defects, poor adhesion (as shown in scanning electron micrographs) and the deterioration of the mechanical properties as manifested by interlaminar shear strength and dynamic mechanical analysis measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号