首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108671篇
  免费   11222篇
  国内免费   7028篇
电工技术   3625篇
技术理论   2篇
综合类   6470篇
化学工业   35285篇
金属工艺   9766篇
机械仪表   2888篇
建筑科学   2144篇
矿业工程   1607篇
能源动力   5034篇
轻工业   7223篇
水利工程   836篇
石油天然气   4422篇
武器工业   604篇
无线电   10910篇
一般工业技术   19006篇
冶金工业   4595篇
原子能技术   1348篇
自动化技术   11156篇
  2024年   168篇
  2023年   2136篇
  2022年   2158篇
  2021年   4256篇
  2020年   3639篇
  2019年   3418篇
  2018年   3233篇
  2017年   3757篇
  2016年   4071篇
  2015年   4039篇
  2014年   5616篇
  2013年   6593篇
  2012年   7230篇
  2011年   9197篇
  2010年   7012篇
  2009年   8076篇
  2008年   6961篇
  2007年   7811篇
  2006年   7046篇
  2005年   5511篇
  2004年   4523篇
  2003年   3837篇
  2002年   3063篇
  2001年   2386篇
  2000年   2071篇
  1999年   1613篇
  1998年   1262篇
  1997年   944篇
  1996年   922篇
  1995年   836篇
  1994年   786篇
  1993年   592篇
  1992年   452篇
  1991年   362篇
  1990年   312篇
  1989年   239篇
  1988年   152篇
  1987年   105篇
  1986年   100篇
  1985年   74篇
  1984年   57篇
  1983年   34篇
  1982年   52篇
  1981年   49篇
  1980年   39篇
  1979年   29篇
  1978年   13篇
  1977年   15篇
  1975年   14篇
  1951年   26篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
1.
An analysis has been carried out to examine the heat and mass transfer properties of a two-dimensional incompressible electrically conducting Maxwell fluid over a stretching sheet in the existence of Soret, Dufour, and nanoparticles. In many practical scenarios, such as the polymer extrusion process, the problem presented here is crucial. The flow is examined in terms of the impacts of magnetohydrodynamics and elasticity. Brownian motion and thermophoresis are incorporated into the transport equations. Using adequate similarity variables, the governing partial differential equations and related boundary conditions are non-dimensionalized. The fourth–fifth-order Runge–Kutta–Fehlberg procedure is utilized to solve the consequent transformed ordinary differential equations. The effects of various embedded thermo-physical parameters on the fluid velocity, temperature, concentration, Nusselt number, and Sherwood number have been determined and discussed quantitatively. A comparison of a special case of our results with the one previously reported in the literature shows a very good agreement. An increase in the values of Du and Sr leads to an increase in the temperature and concentration distribution. Nusselt number estimates decrease as Nb estimations increase. Furthermore, this study leads to the study of different flows of electrically conducting fluid over a stretching sheet problem that includes the two-dimensional nonlinear boundary equations.  相似文献   
2.
A high-throughput (105.5 g/h) passive four-stage asymmetric oscillating feedback microreactor using chaotic mixing mechanism was developed to prepare aggregated Barium sulfate (BaSO4) particles of high primary nanoparticle size uniformity. Three-dimensional unsteady simulations showed that chaotic mixing could be induced by three unique secondary flows (i.e., vortex, recirculation, and oscillation), and the fluid oscillation mechanism was examined in detail. Simulations and Villermaux–Dushman experiments indicate that almost complete mixing down to molecular level can be achieved and the prepared BaSO4 nanoparticles were with narrow primary particle size distribution (PSD) having geometric standard deviation, σg, less than 1.43 when the total volumetric flow rate Qtotal was larger than 10 ml/min. By selecting Qtotal and reactant concentrations, average primary particle size can be controlled from 23 to 109 nm as determined by microscopy. An average size of 26 nm with narrow primary PSD (σg = 1.22) could be achieved at Qtotal of 160 ml/min.  相似文献   
3.
Hydrogen peroxide (H2O2) has been listed as one of the 100 most important chemicals in the world. However, huge amount of residual H2O2 is hard to timely decomposed into O2 and H2O under acidic condition, easily resulting in explosion hazard. Here, we reported a core–shell structure catalyst, that is graphene with Co N structure encapsulated Co nanoparticles. Co N graphene shell serves as the active site for the H2O2 decomposition, and Co core further enhance this decomposition. Benefiting from it, the H2O2 decomposition were close to 100% after 6 cycles without pH adjustment, which increased 6 orders of magnitude compared with no catalyst. At the same time, the O2 generation reached 99.67% in 2 h with little metal leaching, and ·OH has been greatly inhibited to only 0.08%. This work can cleanly remove H2O2 with little deep oxidation and protect the process of H2O2 utilization to achieve a safer world.  相似文献   
4.
A double pyrovanadate CaMgV2O7 sample was synthesized via a facile solid-state route under an air atmosphere. The nonequilibrium formation pathways of the CaMgV2O7 were investigated via powder X-ray diffraction. A multistep reactions path (metavanadates–pyrovanadates–double pyrovanadate CaMgV2O7) was proposed to describe the formation of the CaMgV2O7 considering the thermodynamic and kinetic factors. The cell unit parameters of the CaMgV2O7 sample indicated the crystallization according to a monoclinic system with space group P12/c1(14), and the lattice parameters of a = 6.756 Å, b = 14.495 Å, c = 11.253 Å, β = 99.12, and V = 108.806 Å3. X-ray photoelectron spectroscopy also confirmed the +5 oxidation state vanadium in CaMgV2O7. The endothermic effects at 1033 and 1143 K were related to the incongruent melting and liquidus temperatures of CaMgV2O7, respectively. The comprehensive thermodynamic properties of CaMgV2O7 were established in both low- and high-temperature regions, utilizing a physical property measurement system and multi-high-temperature calorimetry (96 lines). The heat capacity (200 J mol K−1) and entropy (198 J mol K−1) at 298.15 K were computed based on the low-temperature heat capacity values, and the enthalpy of formation at 298.15 K was also estimated. The fitted high-temperature capacity can be used to obtain the changes in the enthalpy, entropy, and Gibbs free energy. This study is part of building a reliable thermodynamic database of the CaO–MgO–V2O5 system.  相似文献   
5.
This work describes facile synthesis of a porous polymeric material ( T-HCP ) using readily available reagents. Specifically, T-HCP is a thermally stable and hypercrosslinked polymer (HCP) that is essentially microporous with a high BET specific surface area (940 m2 g?1). Triptycene based polymers are known to feature internal free volume. Thus, the incorporation of triptycene units and extensive crosslinking by an external cross-linker in T-HCP makes it a promising adsorbent for small gas capture applications. Experimental results show that T-HCP demonstrated good CO2 capture capacity of 132 mg g?1 (273 K, 1 bar). Molecular hydrogen storage capacity of T-HCP is estimated to be 17.7 mg g?1 (77 K, 1 bar). T-HCP revealed high CO2/N2 selectivity (up to 63) as well as promising CO2/CH4 (up to 9.1) selectivity suggesting its potential applicability for CO2 separation from flue and natural gases.  相似文献   
6.
In the present work it is found that the pyrotechnic composition VS-2 can be initiated with flash lamps IFC-500 and EVIS. VS-2 pyrotechnic composition contains 90% of mercury(Ⅱ) 5-hydrazinotetrazolate perchlorate and 10% of optically transparent copolymer of 2-methyl-5-vinyltetrazole and methacrylic acid (PVMT). We have found that the flash lamps make it possible to initiate combustion of VS-2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high, and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm-2 and 90 mg·cm-2, showing ignition delay times 10 μs and 3 μs, respectively. We also measured detonation velocities for VS-2 composition film charges, which were 4375-4505 m·s-1 (of the charge being surface mass 60 mg·cm-2) and 4221-4281 m·s-1 (of the charge being surface mass 90 mg·cm-2) and their blasting action on the aluminum plate. The depths of the normal shock wave imprints at the charge-barrier interface were 0.6-0.7 mm (for surface mass of the film charges 60 mg·cm-2) and 1.2-1.3 mm (for surface mass of the film charges 90 mg·cm-2).  相似文献   
7.
Oxygen evolution reaction (OER) plays a decisive role in electrolytic water splitting. However, it is still challengeable to develop low-cost and efficient OER electrocatalysts. Herein, we present a combination strategy via heteroatom doping, hetero-interface engineering and introducing conductive skeleton to synthesize a hybrid OER catalyst of CNT-interconnected iron-doped NiP2/Ni2P (Fe-(NiP2/Ni2P)@CNT) heterostructural nanoflowers by a simple hydrothermal reaction and subsequent phosphorization process. The optimized Fe-(NiP2/Ni2P)@CNT catalyst delivers an ultralow Tafel slope of 46.1 mV dec?1 and overpotential of 254 mV to obtain 10 mA cm?2, which are even better than those of commercial OER catalyst RuO2. The excellent OER performance is mainly attributed to its unique nanoarchitecture and the synergistic effects: the nanoflowers constructed by a 2D-like nanosheets guarantee large specific area and abundant active sites; the highly conductive CNT skeleton and the electronic modulation by the heterostructural NiP2/Ni2P interface and the hetero-atom doping can improve the catalytic activity; porous nanostructure benefits electrolyte penetration and gas release; most importantly, the rough surface and rich defects caused by phosphorization process can further enhance the OER performance. This work provides a deep insight to boost catalytic performance by heteroatom doping and interface engineering for water splitting.  相似文献   
8.
Hydrogen adsorption performance and mechanism upon cycling of the upscaled Ni-doped hierarchical carbon scaffold (HCS) are investigated. Upon 22 hydrogen ad/desorption cycles (T = 25–50 °C and p (H2) = 1–50 bar), the upscaled Ni-doped HCS shows excellent cycling stability with gravimetric capacity of up to 1.51 wt % H2. This is due to mechanical stability of HCS and good distribution of Ni nanoparticles. Hydrogen adsorption mechanism of Ni-doped HCS upon cycling is experimentally and theoretically characterized. Besides dissociative adsorption onto the surface, hydrogen diffusion into the lattice structure of Ni is observed. The latter enhances with the number of ad/desorption cycles and alters the electron sharing mechanisms between Ni and H during adsorption.  相似文献   
9.
In this article, the memory-based dynamic event-triggered controller design issue is investigated for networked interval type-2 (IT2) fuzzy systems under non-periodic denial-of-service (DoS) attacks. For saving limited network bandwidth, a novel memory-based dynamic event-triggered mechanism (DETM) is proposed to schedule data communication. Unlike existing event-triggered generators, the developed memory-based DETM can utilize a series of newly released signals and further save network resources by introducing interval dynamic variables. Moreover, to improve design flexibility, an IT2 fuzzy controller with freely selectable fuzzy rule number and premise membership functions (MFs) is synthesized. Then, a new switched time-delay system with imperfectly matched MFs is established under the consideration of memory-based DETM and DoS attacks simultaneously. Besides, based on the property of MFs, the boundary information of membership grades and slack matrices are introduced in the stability analysis. Furthermore, by using a piecewise Lyapunov–Krasovskii method, membership-functions-dependent criteria are deduced to ensure the asymptotic stability of built fuzzy switched systems. Finally, the effectiveness of proposed control strategies is demonstrated by simulation examples.  相似文献   
10.
以正辛基三乙氧基硅烷和3-巯基丙基三乙氧基硅烷为改性剂,以双氧水为氧化剂,在水基环境下对亲水纳米SiO2颗粒表面进行改性,得到具有磺酸基和辛基的双亲纳米SiO2颗粒,并通过红外和热重对其化学结构和热稳定性进行分析。将双亲纳米SiO2颗粒分散在地层水中制备纳米流体,并评价纳米流体的稳定性、界面性质和渗吸效率。利用核磁共振技术探究纳米流体渗吸过程中岩心孔隙内原油运移规律。结果表明,纳米流体储存30 d未出现分层现象,表现出良好的稳定性;经纳米流体处理的岩心亲水性增强。此外,双亲纳米SiO2颗粒将油水界面张力降低至1.7 mN/m;纳米流体渗吸采收率高达22.6%,渗吸初始阶段小孔隙中的原油被动用,而在渗吸后期阶段大孔隙中的原油才被动用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号