首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38000篇
  免费   4124篇
  国内免费   2355篇
电工技术   8135篇
技术理论   3篇
综合类   3044篇
化学工业   6313篇
金属工艺   1642篇
机械仪表   1875篇
建筑科学   1354篇
矿业工程   937篇
能源动力   4436篇
轻工业   954篇
水利工程   380篇
石油天然气   721篇
武器工业   351篇
无线电   3239篇
一般工业技术   3987篇
冶金工业   1234篇
原子能技术   392篇
自动化技术   5482篇
  2024年   212篇
  2023年   714篇
  2022年   1156篇
  2021年   1287篇
  2020年   1592篇
  2019年   1395篇
  2018年   1206篇
  2017年   1574篇
  2016年   1612篇
  2015年   1437篇
  2014年   2190篇
  2013年   2289篇
  2012年   2261篇
  2011年   2930篇
  2010年   2161篇
  2009年   2082篇
  2008年   2116篇
  2007年   2296篇
  2006年   2089篇
  2005年   1716篇
  2004年   1509篇
  2003年   1385篇
  2002年   1215篇
  2001年   1020篇
  2000年   887篇
  1999年   756篇
  1998年   520篇
  1997年   492篇
  1996年   436篇
  1995年   377篇
  1994年   316篇
  1993年   270篇
  1992年   202篇
  1991年   140篇
  1990年   128篇
  1989年   92篇
  1988年   87篇
  1987年   48篇
  1986年   45篇
  1985年   24篇
  1984年   34篇
  1983年   26篇
  1982年   26篇
  1981年   16篇
  1980年   13篇
  1979年   17篇
  1978年   8篇
  1977年   8篇
  1959年   9篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Cable‐shaped supercapacitors (SCs) have recently aroused significant attention due to their attractive properties such as small size, lightweight, and bendability. Current cable‐shaped SCs have symmetric device configuration. However, if an asymmetric design is used in cable‐shaped supercapacitors, they would become more attractive due to broader cell operation voltages, which results in higher energy densities. Here, a novel coil‐type asymmetric supercapacitor electrical cable (CASEC) is reported with enhanced cell operation voltage and extraordinary mechanical‐electrochemical stability. The CASECs show excellent charge–discharge profiles, extraordinary rate capability (95.4%), high energy density (0.85 mWh cm−3), remarkable flexibility and bendability, and superior bending cycle stability (≈93.0% after 4000 cycles at different bending states). In addition, the CASECs not only exhibit the capability to store energy but also to transmit electricity simultaneously and independently. The integrated electrical conduction and storage capability of CASECS offer many potential applications in solar energy storage and electronic gadgets.  相似文献   
3.
The influence of the environment on the excited state transitions of meso-tetrakis(p-sulfonatophenyl) porphyrin (TPPS) is reported. TPPS was investigated in protonated and non-protonated forms, and in the presence of the cationic cetyltrimethylammonium bromide (CTAB) micelles. The singlet excited-state absorption spectra were measured by using the white-light continuum Z-scan technique and the triplet–triplet absorption spectra were acquired employing an association of laser flash photolysis and Z-scan techniques. Our results show that the perseveration of the molecular symmetry, upon excitation, depends on the state of multiplicity of the molecules, as well as on the environment and structural characteristics of the porphyrin. Additionally, it was observed that for excited molecules, the ring distortion caused by the protonation of porphyrin ring has great influence on the changes observed for the symmetry and vibronic structure. The results clearly show that the porphyrin investigated is a promising candidate for optical limiting applications for all investigated environments.  相似文献   
4.
Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. Abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris. This paper compares the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances. The effect of submergence on the diameter and effective footprint of AWJ erosion footprints was measured and compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of stagnation as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. Moreover, it was observed that the instantaneous erosion rate decreased with channel depth, and that this decrease was a function only of the channel cross-sectional geometry, being independent of the type of metal, the jet angle, the standoff distance, and regardless of whether the jet was submerged or in air, in either the forward or backward directions. It is shown that submerged AWJM results in narrower features than those produced while machining in air, without a decrease in centerline etch rate.  相似文献   
5.
Three N-heteroleptic Pt(II) complexes, [Pt(C^C)(O^O)] [O^O = acetylacetonate, C^C = 1-phenyl-1,2,4-triazol-5-ylidene (1), C^C = 4-phenyl-1,2,4-triazol-5-ylidene (2), C^C = 2-phenylpyrazine (3)] have been investigated with density functional theory (DFT) and time-dependent density functional theory (TDDFT). The radiative decay rate constants of complexes 1–3 have been discussed with the oscillator strength (fn), the strength of spin–orbit coupling (SOC) interaction between the lowest energy triplet excited state (T1) and singlet excited states (Sn), and the energy gaps between E(T1) and E(Sn). To illustrate the nonradiative decay processes, the transition states between triplet metal-centered (3MC) and T1 states have been optimized and were verified with the calculations of vibrational frequencies and intrinsic reaction coordinate (IRC). In addition, the minimum energy crossing points (MECPs) between 3MC and ground states (S0) were optimized. At last, the potential energy curves relevant to the nonradiative decay pathways are simulated. The results show that complex 3 has the biggest photoluminescence quantum yield because the complex 3 has the biggest radiative decay rate constant and the smallest nonradiative decay rate constant in complexes 1–3.  相似文献   
6.
In this work a multicommuted flow system employing copper–4,4′- dipyridyl coordination compound as the solid-phase reagent for the spectrophotometric determination of reducing sugar was developed. The coordination compound was synthesized through a reaction of the 4,4′-dipyridyl and copper (II) nitrate, under hydrothermal conditions. The complex was characterized by infrared spectroscopy (FTIR), power X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and thermogravimetric analysis (TGA). Based on the characterization, a multicommuted spectrophotometric procedure for the determination of reducing sugar using copper (II) complex as solid reagent is proposed. The proposed method was based on the redox reaction between a monosaccharide, such as fructose and glucose (reducing sugar) and Cu(II). This reaction, mediated in an alkaline medium, produces a yellow compound that can be determined by absorption electronic spectroscopy (λABS = 420 nm). Under optimum experimental conditions, a linear response ranging from 1.0 to 20.0 g L−1 (R = 0.9978 and n = 5), a detection (3σ criterion) and quantification (10σ criterion) limit estimated at 0.23 and 0.75 g L−1, respectively, a standard deviation relative of 4.7% (n = 7), for a reference solution of 10.0 g L−1 reducing sugar, and a sampling rate of 75 determinations per hour were achieved. The proposed system was applied to the determination of reducing sugars in coconut water and juices. The analysis of ten samples and the application of the t-test to the results found, and those obtained using reference procedures (AOAC), provided no significant differences at a 95% confidence level. This system enabled the analysis of reducing sugar with ease and simplicity, providing a significant economy of the solid reagent (600 μg per determination) and reducing effluent generation.  相似文献   
7.
Spinel LiSr0·1Cr0·1Mn1·8O4 was synthesised by high temperature solid state method in order to enhance the electrochemical performance. The LiSr0·1Cr0·1Mn1·8O4 (LSCMO) materials were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical tests. The XRD and SEM studies confirm that LSCMO had spinel crystal structure with a space group of Fd3m, and the particle of LSCMO shows irregular shape. The cyclic voltammetry data illustrated that the heavy current charge–discharge performance of LMO was improved by Sr2+ and Cr3+ doping. The galvanostatic charge–discharge of LSCMO cathode materials was measured at 1, 5, 10 and 20 C. The results indicated that LSCMO improved the capacity retention.  相似文献   
8.
Flotation has been used in industry for more than a half century as the primary technique for upgrading phosphate. While the flotation of phosphate was inefficient when oleic acid was used alone as a collector, therefore a mixed collector of oleic acid (HOl), linoleic acid (LA) and linolenic acid (LNA) was employed to improve the recovery of phosphate flotation. The batch flotation results showed that the optimal composition of the mixed collector was 54 wt.% HOl, 36 wt.% LA and 10 wt.% LNA. Additionally, the effect of pH on the mixed collector application was studied while considering the surface tension, contact angle and micro-flotation. The results showed that the mixed collector should be used at a pH of 9.5. Above a pH of 9.5, the adsorption of fatty acids dimers on the apatite surface hindered phosphate flotation. The influence of the mixed collector assembly on apatite flotation was also investigated. It was demonstrated that due to its low critical micelle concentration, a sufficiently hydrophobic apatite surface could be generated at a collector concentration of 60 mg/L. In addition, zeta potential experiments suggested that collector adsorption was governed by chemisorption. FTIR and XPS spectra studies further indicated that the chemical reaction involved the carboxyl groups of fatty acids and Ca species at the apatite surface for each fatty acid in the mixed collector.  相似文献   
9.
This paper introduces two novel nonlinear stochastic attitude estimators developed on the Special Orthogonal Group with the tracking error of the normalized Euclidean distance meeting predefined transient and steady‐state characteristics. The tracking error is confined to initially start within a predetermined large set such that the transient performance is guaranteed to obey dynamically reducing boundaries and decrease smoothly and asymptotically to the origin in probability from almost any initial condition. The proposed estimators produce accurate attitude estimates with remarkable convergence properties using measurements obtained from low‐cost inertial measurement units. The estimators proposed in continuous form are complemented by their discrete versions for the implementation purposes. The simulation results illustrate the effectiveness and robustness of the proposed estimators against uncertain measurements and large initialization error, whether in continuous or discrete form.  相似文献   
10.
The low price of lead-acid, the most popular battery, is often used in setting cost targets for emerging energy storage technologies. Future cost reductions in lead acid batteries could increase investment and time scales needed for emerging storage technologies to reach cost-parity. In this paper the first documented model of cost reductions for lead-acid batteries is developed. Regression to a standard experience curve using 1989–2012 data yield a poor fit, with R2 values of 0.17 for small batteries and 0.05 for larger systems. To address this problem, battery costs are separated into material and residual costs, and experience curves developed for residual costs. Depending on the year, residual costs account for 41–86% of total battery cost. Using running-time averages to address volatility in material costs, a 4-year time average experience curve for residual costs yield much higher R2, 0.78 for small and 0.74 for large lead-acid batteries. The learning rate for residual costs in lead-acid batteries is 20%, a discovery with policy implications. Neglecting to consider cost reductions in lead-acid batteries could result in failure of energy storage start-ups and public policy programs. Generalizing this result, learning in incumbent technologies must be understood to assess the potential of emerging ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号