首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21901篇
  免费   1909篇
  国内免费   1162篇
电工技术   1387篇
综合类   1717篇
化学工业   2390篇
金属工艺   1963篇
机械仪表   1956篇
建筑科学   2086篇
矿业工程   1402篇
能源动力   928篇
轻工业   1219篇
水利工程   646篇
石油天然气   939篇
武器工业   250篇
无线电   1336篇
一般工业技术   2905篇
冶金工业   1056篇
原子能技术   238篇
自动化技术   2554篇
  2024年   42篇
  2023年   322篇
  2022年   558篇
  2021年   649篇
  2020年   692篇
  2019年   587篇
  2018年   597篇
  2017年   752篇
  2016年   846篇
  2015年   879篇
  2014年   1338篇
  2013年   1435篇
  2012年   1504篇
  2011年   1803篇
  2010年   1374篇
  2009年   1320篇
  2008年   1163篇
  2007年   1450篇
  2006年   1215篇
  2005年   1019篇
  2004年   898篇
  2003年   747篇
  2002年   623篇
  2001年   469篇
  2000年   453篇
  1999年   426篇
  1998年   302篇
  1997年   303篇
  1996年   228篇
  1995年   188篇
  1994年   179篇
  1993年   113篇
  1992年   94篇
  1991年   72篇
  1990年   72篇
  1989年   54篇
  1988年   45篇
  1987年   22篇
  1986年   24篇
  1985年   20篇
  1984年   20篇
  1983年   19篇
  1982年   19篇
  1981年   8篇
  1980年   10篇
  1979年   2篇
  1978年   5篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
1.
Two-dimensional rotating detonation waves (RDWs) with separate injections of hydrogen and air are simulated using the Navier–Stokes equations together with a detailed chemical mechanism. The effects of injection stagnation temperature and slot width on the detonation propagation patterns are investigated. Results find that extremely high temperatures can lead to a chaotic mode in which detonation waves are generated and extinguished randomly. Increasing the slot width can reduce the number of detonation waves and finally trigger detonation quenching at a low injection stagnation temperature. But increasing the slot width can change the RDW propagation pattern from a chaotic to a stable mode under high injection temperature. Furthermore, the kinetic parameter τ (representing the chemical reactivity of the mixture) and the kinematic parameter α (representing the mixing efficiency of hydrogen and oxygen) are introduced to distinguish the RDW propagation patterns.  相似文献   
2.
《Ceramics International》2022,48(22):33177-33184
The rare earth (Yb3+) substituted W-type hexagonal ferrites with composition CaPb2-xYbxFe16O27 (x = 0.0, 0.5, 1.0, 1.5, 2.0) were synthesized by a facile and cost-effective sol-gel auto combustion method with post heat treatment. The synthesized hexagonal ferrites were characterized by a variety of analytical techniques, and an impedance analyzer was used to investigate the effects of Ytterbium on structural, magnetic, spectral and dielectric properties. The relationship between their impedance, structure and dielectric properties was investigated. The X-ray diffraction patterns verify the presence of single-phase W-type hexagonal ferrites. Physical properties such as Dbulk (bulk density), Dxrd (X-ray density), and P (porosity) of the CaPb2-xYbxFe16O27 W-type hexagonal ferrites were calculated. The bulk density of all the samples was decreased, and X-ray intensity was increased with the Ytterbium replacement in the W-type hexaferrite. By adding Yb3+ ions, the lattice parameters, cell volume and X-ray density were reduced due to the substitution of ytterbium with smaller ionic radii compared to the lead ion with large ionic radii. The AC-conductivity was increased from (1.523 × 10?5 to 6.699 × 10?5) Ωcm?1. The dielectric constant and tangent loss was found to decrease substantially. The magnetic properties were found to enhance by the substitution of Yb3+. The low coercivity value of Yb3+ substituted W-type hexagonal ferrites are suitable for magnetic recording media operated at a high-frequency regime. The enhancement of electrical, dielectric and magnetic characteristics suggests these materials as promising for multi-layer chip inductors (MLCIs) circuit applications.  相似文献   
3.
《Ceramics International》2022,48(14):19513-19526
Comprehensive control of processing techniques is primordial when fine-tuning the morphological features of titanium dioxide nanotube arrays (TNTs). This systematic review and meta-analysis compiled articles published from 2007 to date on the synthesis and growth mechanism of nanotubes fabricated via electrochemical anodization and evaluated the potential relationships between anodizing conditions and the resulting structures. Studies were gathered from the Science Direct online database, screened according to predefined criteria, and evaluated for their eligibility. Ninety-nine studies were assessed in the meta-analysis, 87 of them on tube length, 80 on tube diameter, and 33 on wall thickness. Multiple linear regression was performed to test if anodization parameters significantly predicted the resulting morphology of TiO2 nanotubular structures. Overall regression for the three responses was statistically significant (length: R2 = 0.487, p < 0.001; diameter: R2 = 0.899, p < 0.001; wall thickness: R2 = 0.792, p < 0.001). Applied potential was one of the main effects predicting all three responses (p < 0.001 in every model). Other important main predictors were anodizing time for tube length (p < 0.001), water percentage for tube diameter (p < 0.001) and ammonium fluoride (NH4F) concentration for wall thickness (p < 0.001).  相似文献   
4.
介绍了在复杂环境下爆破拆除一地下特大钢筋混凝土支撑的技术难点。由于合理选取爆破参数,采取孔内高段、孔外低段毫秒微差起爆网路,安全防护采取覆盖、近体、保护性三种措施,有效地阻止了飞石对周围建筑物的损害,并对爆破可能产生的危害进行了科学验算,最后分多次爆破圆满完成拆除任务。  相似文献   
5.
分析了注射模生产的现状,针对其生产中智能化调控应用方面的不足,提出模内参数的自适应调节方案,还介绍了自适应工作的原理、可调参数种类、逻辑推理等,并实际验证了基于注塑设备联网集成工艺数据下注射模成型工艺自适应调节的可行性。  相似文献   
6.
《Ceramics International》2022,48(3):3544-3553
In this study the effects of thermal shock on the impact damage resistance, damage tolerance and flexural strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates with balanced and symmetric layup were gradually heated to 1200°C in an air-based furnace and held for at least 30 min before being removed and immersed in water at room temperature. The laminates were then subjected to low velocity impacts via a hemispherical steel impactor. The resultant damage was characterized non-destructively, following which the laminates were subjected to compression tests. Three-point bend tests were also performed to evaluate the effect of thermal shock on the flexural strength and related failure modes of the laminates. Thermally shocked laminates showed smaller internal damage and larger external damage areas in comparison to their pristine counterparts. For the impact energy and resultant damage size considered, the residual compressive strengths for the thermally shocked and pristine laminates were similar.  相似文献   
7.
In present work, the development of macroporous monolithic layers bearing the artificial recognition sites toward L-phenylalanine has been carried out. The set of macroporous poly(2-aminoethyl methacrylate-co-2-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate) materials with average pore size ranged in 340–1200 nm was synthesized. The applicability of Hildebrand's and Hansen's theories for the prediction of polymer compatibility with porogenic solvents was evaluated. The dependences of average pore size on theoretically calculated parameters were plotted. The linear trend detected for Hansen's theory has indicated the high suitability of this approach to select appropriate porogens. The synthesized monolithic MIP layers were tested toward the ability to rebind phenylalanine-derivative in microarray format. The influence of such factors as average pore size of the material, the concentration of template molecule in polymerization mixture, interaction time of analyte with its imprinted sites on binding efficiency were studied. The developed materials demonstrated good analyte rebinding from buffer solution with recognition factors 2.5–3.4 depending on the MIP sample. The comparable rebinding efficiency was also detected when the analysis was carried using complex biological media. The selectivity of phenylalanine binding from the equimolar mixture of structural analogues was 81.9% for free amino acid and 91.2% for labeled one.  相似文献   
8.
Ge2Sb2Tes is the most widely utilized chalcogenide phase-change material for non-volatile photonic applications,which undergoes amorphous-cubic and cubic-hexagonal phase transition under external excitations.However,the cubic-hexagonal optical contrast is negligible,only the amorphous-cubic phase transition of Ge2Sb2Te5 is available.This limits the optical switching states of traditional active dis-plays and absorbers to two.We find that increasing structural disorder difference of cubic-hexagonal can increase optical contrast close to the level of amorphous-cubic.Therefore,an amorphous-cubic-hexagonal phase transition with high optical contrast is realized.Using this phase transition,we have developed display and absorber with three distinct switching states,improving the switching perfor-mance by 50%.Through the combination of first-principle calculations and experiments,we reveal that the key to increasing structural disorder difference of amorphous,cubic and hexagonal phases is to intro-duce small interstitial impurities(like N)in Ge2Sb2Tes,rather than large substitutional impurities(like Ag)previously thought.This is explained by the formation energy and lattice distortion.Based on the impurity atomic radius,interstitial site radius and formation energy,C and B are also potential suit-able impurities.In addition,introducing interstitial impurities into phase-change materials with van der Waals gaps in stable phase such as GeSb4Te7,GeSb2Te4,Ge3Sb2Te6,Sb2Te3 will produce high optical con-trast amorphous-metastable-stable phase transition.This research not only reveals the important role of interstitial impurities in increasing the optical contrast between metastable-stable phases,but also proposes varieties of candidate matrices and impurities.This provides new phase-change materials and design methods for non-volatile optical devices with multi-switching states.  相似文献   
9.
We report here the development of two computational tools PCFPS (Photonic Crystal Fiber Parameter Study) and PCFPA (Photonic Crystal Fiber Parameter Analysis), equipped with graphical user interface (GUI) for modeling of photonic crystal fiber. The tools are based on different structural parameters, and they provide characteristic analysis of the modal parameters from the structural parameters. The main feature of PCFPS is that it enables the user to find out the values of each defining modal parameter that has an immense contribution towards the manufacture of photonic crystal fiber. Additionally, PCFPA allows the user to observe the variation in the modal parameters with respect to the changes in structural parameters (such as d, Λ, d/Λ, and λ/>Λ). Besides their ease of use, these two schemes have high computational precision and adaptability, giving a novel platform to optical engineers to modulate the microstructured fibers according to their requirement.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号