首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   611篇
  免费   8篇
  国内免费   12篇
电工技术   18篇
综合类   3篇
化学工业   244篇
金属工艺   13篇
机械仪表   4篇
矿业工程   2篇
能源动力   248篇
无线电   16篇
一般工业技术   77篇
冶金工业   3篇
原子能技术   1篇
自动化技术   2篇
  2023年   28篇
  2022年   47篇
  2021年   50篇
  2020年   37篇
  2019年   43篇
  2018年   38篇
  2017年   23篇
  2016年   18篇
  2015年   17篇
  2014年   30篇
  2013年   13篇
  2012年   13篇
  2011年   83篇
  2010年   61篇
  2009年   37篇
  2008年   28篇
  2007年   25篇
  2006年   17篇
  2005年   9篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
排序方式: 共有631条查询结果,搜索用时 46 毫秒
1.
Recently, researchers have devoted more attention to supercapacitors (SCs) to integrate with batteries in energy storage systems (ESSs) for vehicle applications. In this study, we attempted to characterize the use of SCs in the ESS for a PEM fuel cell vehicle equipped with an alternator to maximize the performance of regenerative braking. We applied lithium-ion batteries (LIBs) and SCs as energy storage devices to examine their effect on ESS. Then we used a hysteresis brake to apply controllable braking force on the flywheel to form hybrid braking (HB) and made efforts to study its behavior to suggest a braking control strategy. We also ran the whole system over the rotational speed to cover the range of driving speed. At last, we sized the SCs for the most commonly used fuel cell electric vehicle (FCEV) in Korea, i.e., Hyundai NEXO, based on the results obtained from the above study by alternator efficiencies.  相似文献   
2.
In the present work, nitrogen doped hierarchically activated porous carbon (APC) samples have been synthesized via single step scalable method using ethylene di-amine tetra acetic acid (EDTA) as precursor and KOH as activating agent. Activated porous carbons with different pore sizes have been developed by varying the activation temperature. SEM, TEM and SAXS analysis suggest that with variation of activation temperature, a hierarchical porous structure with interconnected meso-pore and micro pores has been achieved. The sufficiently high surface area of the synthesized materials provides active sites to enhance the diffusion of ions between the electrolyte and the carbon electrodes. The electrode prepared at 800 °C activated sample exhibited highest specific capacitance of 274 Fg-1 in two electrode setup, at a current density of 0.1 Ag-1 in 1 M aqueous H2SO4. Along with this, it showed maximum energy density of 9.5 Whkg?1 at a power density of 64.5 Wkg-1. The remarkable electrochemical performance reveals that the synthesized nitrogen doped activated carbon electrodes derived from EDTA can be tuned to have optimum pore structure and pore size distribution for better electrochemical performance, so it can be considered as a potential electrode material for applications in electrochemical energy storage.  相似文献   
3.
Layered double hydroxide (LDH) is potentially excellent supercapacitor (SC) materials, but the low conductivity and easy agglomeration limit the further improvement of their electrochemical properties. Therefore, LDHs are requisite to grow on some conductive substrates to produce high-performance SC. In this paper, the conductive two-dimensional (2D) transition metal carbides, nitrides and carbonitrides (called MXene) were explored as the substrate to directly deposit NiFe-LDH nanosheets by a one-step hydrothermal method, then a three-dimensional (3D) porous NiFe-LDH/MXene electrode was obtained. The morphology and electrochemical performance of the composite electrodes were analyzed and investigated. The results show that the NiFe-LDH/MXene electrode has larger specific capacitance (720.2 F/g) than NiFe-LDH (465 F/g), and the capacitance of the composite electrode retained 86% after 1000 cycles (only 24% for NiFe-LDH), showing excellent cycle stability. The improved electrochemical performance of the composites is caused by the stable sheet-like structure of NiFe-LDH during charge-discharge time and the conductive network formed by the MXene, which can accelerates electron transport. In addition, the asymmetric SC based on NiFe-LDH/MXene positive electrode display a power density of 758.27 W/kg at an energy density of 42.4 Wh/Kg. These results indicate the NiFe-LDH/MXene composites can be applied as the novel candidate of high-performance SC electrodes.  相似文献   
4.
《Ceramics International》2020,46(3):3124-3131
Supercapacitors (SCs) have been considered as inspiring energy storage devices due to the long cycle lifetime and high power densities. However, their energy density is limited due to the low capacitance of cathode materials and inferior cycling stability at practically useable potential windows >1.2 V. In this paper, we demonstrate the synthesis of a novel ternary Fe3O4-rGO-MoO3 nano-composite (FGM) with nanoparticles-like morphology (NPs) by utilizing the fast and facile microwave hydrothermal process. The optimized composition of FGM nanocomposite is characterized by the XPS, EDS, Raman, SEM, TEM and HRTEM techniques. The FGM-NPs supported on the carbon cloth (FGM@CC) electrode is used to investigate the electrochemical charge storage properties in basic potassium hydroxide (KOH) electrolyte. The charge-storage properties of the FGM@CC electrode were studied by the CV, GCD and EIS techniques. The obtained results of FGM@CC electrode in aqueous electrolyte showed excellent electrochemical performance as compared with single metal oxides: maximum specific capacitance of 1666.50 F g−1 (FGM@CC), 1075.26 F g−1 (Fe3O4 NPs) and 952.38 F g−1 (MoO3 NPs) at a current density of 2.5 A g−1. The capacitance retention was 95.01% (FGM@CC), 94.1% (Fe3O4 NPs) and 92.5% (MoO3 NPs) after 5000 cycles. Further, the charge storage mechanism is analyzed in the light of power's law and systematical investigated the capacitive and diffusion controlled based stored charge in FGM@CC electrode. Thus FGM nano-composite showed best performance as the cathode material for the next generation flexible supercapacitors.  相似文献   
5.
While wind and solar generation has increased dramatically over the past decade, there has been a much larger increase in gas generation (eia, 2019). This is driven in part by low gas prices but also in part by how electricity markets are organized. The intermittent nature of wind and solar generation increases the need for more flexible and reliable generation; a role gas plants fill well. However, current market structures and rules unfairly tip the balance in their favor compared to energy storage systems. They have created market barriers restrictive enough to prevent market participation of a technology key to a 100 % renewable grid: supercapacitors. Adjusting markets to remove the market barriers to supercapacitor and other energy storage systems will allow for increased renewable penetration while simultaneously improving grid performance and reducing costs.  相似文献   
6.
The relatively low capacitance of negative electrodes, as compared to the capacitance of advanced positive electrodes, poses a serious problem, since this limits the development of asymmetric supercapacitor (SC) devices with a large voltage window and enhanced power-energy characteristics. We fabricate negative SC electrodes with a high capacitance that match the capacitance of advanced positive electrodes at similar active mass loadings, as high as 37?mg?cm?2. Cyclic voltammetry, impedance spectroscopy, galvanostatic charge-discharge data and the power-energy characteristics of the asymmetric SC device exhibit good electrochemical performance for a voltage window of 1.6?V. Our approach involves the development and application of particle extraction through liquid-liquid interface (PELLI) methods, new extraction mechanisms and efficient extractors to synthesize α-FeOOH and β-FeOOH electrode materials. The use of PELLI allows agglomerate-free processing of powders, which facilitates their efficient mixing with multiwalled carbon nanotubes (MWCNT) and allows improved electrolyte access to the particle surface. Experiments to determine the properties of FeOOH-MWCNT composites provided insight into the influence of the electrode material and the structure of extractor molecules on the composite properties. The highest capacitance of 5.86?F?cm?2 for negative electrodes and low impedance were achieved using α-FeOOH-MWCNT composites and a 16-phosphonohexadecanoic acid (PHDA) extractor. This extractor allows adsorption on particles, not only at the liquid-liquid interface, but also in the bulk aqueous phase and can potentially be used as a capping agent for particle synthesis and as an extractor in the PELLI method.  相似文献   
7.
An in-situ polymerization method has been employed to prepare CuO/PANI nanocomposite. The prepared samples have been characterized by X-ray diffraction (XRD), FTIR spectroscopy, field emission scanning electron microscopy (FESEM), and BET analysis. Application of the prepared samples has been evaluated as supercapacitor material in 1 M Na2SO4 solution using cyclic voltammetry (CV) in different potential scan rates, ranging from 5 to 100 mV s−1, and electrochemical impedance spectroscopy (EIS). The specific capacitance of CuO/PANI has been calculated to be as high as 185 F g−1, much higher than that obtained for pure CuO nanoparticles (76 F g−1). Moreover, the composite material has shown better rate capability (75% capacitance retention) in various scan rates in comparison with the pure oxide (30% retention). EIS results show that the composite material benefits from much lower charge transfer resistance, compared to CuO nanoparticles. Moreover, much better cyclic performance has been achieved for the composite material.  相似文献   
8.
Marigold flower (MG; Tagetes erecta) derived Graphene quantum dots (GQDs) have been successfully reported for the fabrication of supercapacitor electrodes in charge storage devices. The GQDs have been synthesized through a hydrothermal route using biomass viz. Waste material (MG) without adding any hazardous chemicals. The successful formation of GQDs as elaborated has been confirmed by various analytical characterization techniques. The as-synthesized GQDs have been electrodeposited on the Ni foil (working electrode) with the help of PVDF (binder) and subsequently, cyclic voltammetry (CV) has been conducted to access specific capacitance, energy density, and other parameters. Moreover, the galvanometric charge/discharge (GCD) technique has been employed due to its accuracy and reliability. Maximum areal specific capacitance has been found as 1.6008 F/cm2 with the current density of 2.0 A/g even after loading a little amount of material on the electrode. The high magnitude of columbic efficiency (160.08), energy density (17.78 Wh/kg), and specific capacitance of 200 F/g at current density 2.0 A/g within a voltage range of −0.55 V to +0.25 V in 2 M KOH electrolyte solution indicate a good electrocapacitive performance of the as-synthesized material. Moreover, the as-synthesized GQDs have shown excellent capacitive retention after 1000th cycles which clearly embarks its sustainable electrocapacitive nature and henceforth offers outstanding potential for the applications in energy storage devices like supercapacitors.  相似文献   
9.
《Advanced Powder Technology》2020,31(3):1001-1006
Ruthenium oxide nanoparticles (RuO2 NPs) are one of the most promising materials at nanoscale, for energy storage devices. In the present work, a bottom up approach was utilized to synthesize RuO2 NPs using biological resources, as reducing agent. Root extract of traditionally important medicinal plant, Akarkara (Anacyclus pyrethrum), was used in this study as the reducing agent. The investigation was carried out without the addition of any external reaction catalyzing agent. The Characterization studies were performed to analyze the conformational nature of the nanoparticles through XRD, SEM, TEM with SAED and FTIR spectroscopy was done to assess the functional moieties. Cyclic voltammetric (CV) studies were carried out to investigate the electrochemical potential of the synthesized RuO2 NPs using the extract. The results demonstrated that the biologically reduced nanoparticles were crystalline, spherical and with an average size of 13 nm. The RuO2 NPs were observed to be highly stable even after repeated usage. CV analysis revealed that capacitance behavior was reversible in nature and the specific capacitance of RuO2 NPs using Akarkara (Anacyclus pyrethrum) coated over carbon sheet was 209 Fg−1 at a scan rate of 5 mV/s. These results proved that green biosynthesis of RuO2 can be used for supercapacitor applications.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号