首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92422篇
  免费   7625篇
  国内免费   6954篇
电工技术   2379篇
综合类   5114篇
化学工业   18739篇
金属工艺   29393篇
机械仪表   3858篇
建筑科学   2969篇
矿业工程   2063篇
能源动力   2146篇
轻工业   4069篇
水利工程   222篇
石油天然气   1831篇
武器工业   1171篇
无线电   4539篇
一般工业技术   15551篇
冶金工业   9030篇
原子能技术   1087篇
自动化技术   2840篇
  2024年   174篇
  2023年   1445篇
  2022年   2338篇
  2021年   3028篇
  2020年   2951篇
  2019年   2379篇
  2018年   2334篇
  2017年   3054篇
  2016年   3079篇
  2015年   3152篇
  2014年   4488篇
  2013年   4792篇
  2012年   5584篇
  2011年   7038篇
  2010年   5220篇
  2009年   5894篇
  2008年   4658篇
  2007年   6424篇
  2006年   6332篇
  2005年   5216篇
  2004年   4431篇
  2003年   3896篇
  2002年   3124篇
  2001年   2627篇
  2000年   2272篇
  1999年   1875篇
  1998年   1454篇
  1997年   1276篇
  1996年   1189篇
  1995年   943篇
  1994年   863篇
  1993年   646篇
  1992年   558篇
  1991年   418篇
  1990年   349篇
  1989年   285篇
  1988年   169篇
  1987年   112篇
  1986年   101篇
  1985年   85篇
  1984年   87篇
  1983年   64篇
  1982年   85篇
  1981年   77篇
  1980年   57篇
  1978年   55篇
  1977年   53篇
  1976年   61篇
  1975年   72篇
  1974年   71篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
To improve the safety of wet dust removal systems for processing magnesium-based alloys, a new method is proposed for preventing hydrogen generation. In this paper, hydrogen generation by Mg–Zn alloy dust was inhibited with six common metal corrosion inhibitors. The results showed that sodium dodecylbenzene sulfonate was the best hydrogen inhibitor, while CeCl3 enhanced hydrogen precipitation. The film-forming stability of sodium dodecylbenzene sulfonate was tested with different contents, temperatures, Cl? concentrations and perturbation rates. The results showed that this inhibitor formed stable protective films on the surfaces of Mg–Zn alloy particles, and adsorption followed the Langmuir adsorption model.  相似文献   
2.
A high-throughput (105.5 g/h) passive four-stage asymmetric oscillating feedback microreactor using chaotic mixing mechanism was developed to prepare aggregated Barium sulfate (BaSO4) particles of high primary nanoparticle size uniformity. Three-dimensional unsteady simulations showed that chaotic mixing could be induced by three unique secondary flows (i.e., vortex, recirculation, and oscillation), and the fluid oscillation mechanism was examined in detail. Simulations and Villermaux–Dushman experiments indicate that almost complete mixing down to molecular level can be achieved and the prepared BaSO4 nanoparticles were with narrow primary particle size distribution (PSD) having geometric standard deviation, σg, less than 1.43 when the total volumetric flow rate Qtotal was larger than 10 ml/min. By selecting Qtotal and reactant concentrations, average primary particle size can be controlled from 23 to 109 nm as determined by microscopy. An average size of 26 nm with narrow primary PSD (σg = 1.22) could be achieved at Qtotal of 160 ml/min.  相似文献   
3.
The micro-powder injection molding (micro-PIM) process has the potential to bridge the gap between the design and manufacturing of micro-components that are often used in small and handy devices. Numerical modeling helps to analyze and overcome various difficulties of micro-PIM. In the present work, a numerical model is developed to predict the powder–binder separation (a common defect in PIM and especially severe in micro-PIM) during the injection of an alumina feedstock. A powder–binder separation criterion is proposed dealing with applied injection pressure and friction force between the powder and binder. An indirect comparison of feedstock travel time between two locations is used to validate the model. The predicted segregation from the simulated result is supported by a qualitative experimental measurement. The developed model can be used to optimize injection parameters to get a defect-free product.  相似文献   
4.
甫沙4井位于塔里木盆地塔西南坳陷昆仑山前冲断带的柯东构造带上,北部和东部分别发育有柯克亚和柯东1井油气田。为研究甫沙4井原油来源与充注过程,对原油样品和连续抽提后的含油砂样各组分(游离态、束缚态、包裹体)进行GC、GC?MS和 GC?IRMS分析,与柯克亚凝析油气田油样进行油—油对比。结果表明:甫沙4井晚期充注原油组分具有C29?32重排藿烷、重排甾烷和Ts相对含量高,C27?29甾烷ααα 20R分布呈反“L”型,以及正构烷烃单体碳同位素值较低等特征,与柯克亚凝析油气田来源于二叠系普司格组(P2?3p)烃源岩的主体原油(I类)地球化学特征一致。而早期充注的原油组分具有重排藿烷、重排甾烷和Ts相对含量较低,C27?29甾烷ααα 20R分布呈“V”型,以及正构烷烃单体碳同位素值较高等特征,与柯克亚凝析油气田来源于中—下侏罗统湖相泥岩的II类原油地球化学特征一致。甫沙4井经历3个阶段成藏过程:①在上新世,二叠系烃源岩于生油晚期阶段生成的I类原油运移至柯克亚构造带或柯东构造带深部形成油藏;②在更新世早期,侏罗系烃源岩于生油早—中期生成的II类原油运移至甫沙4井白垩系储层;③在第四纪,强烈的构造作用使深部I类原油沿断裂调整进入甫沙4井白垩系储层。最终造成甫沙4井白垩系储层II类原油先充注,I类原油后充注的特殊现象。  相似文献   
5.
MgB2 superconductor pellets were synthesized through Mg gas infiltration method using nanosized- and microsized B powders. There was a marked difference in the superconducting properties of the two samples, particularly in the pinning force and dominant pinning mechanism. The microstructures of the samples were observed using HR-TEM and STEM-HAADF, and the results showed that the primary reason for the difference in the superconducting properties is the distribution of the nanosized second-phase particle MgO. Additionally, a feasible reaction model for the Mg gas infiltration method was established. Compared to the Mg liquid infiltration method, the gas infiltration showed better penetrability ability with a small amount of residual Mg. This study presents a novel synthesis process to fabricate an MgB2 pellet with superior density and superconducting properties. This method can be used in multiple applications such as superconducting bearings, compact superconductor magnets, and magnetic shielding.  相似文献   
6.
以红心火龙果发酵液作为研究对象,通过优化喷雾干燥工艺制备粉剂,最佳工艺条件为:20%麦芽糊精,进液量:10mL/min,进口温度为120℃,出口温度为65℃;得到的粉剂为紫红色粉末,益生菌含量达到108cfu/g以上,口感酸甜。将发酵后的火龙果籽进行提取,得到的火龙果籽油含有丰富的十六酸、亚油酸和油酸。  相似文献   
7.
The study of steels which guarantee safety and reliability throughout their service life in hydrogen-rich environments has increased considerably in recent years. Their mechanical behavior in terms of hydrogen embrittlement is of utmost importance. This work aims to assess the effects of hydrogen on the tensile properties of quenched and tempered 42CrMo4 steels. Tensile tests were performed on smooth and notched specimens under different conditions: pre-charged in high pressure hydrogen gas, electrochemically pre-charged, and in-situ hydrogen charged in an acid aqueous medium. The influence of the charging methodology on the corresponding embrittlement indexes was assessed. The role of other test variables, such as the applied current density, the electrolyte composition, and the displacement rate was also studied. An important reduction of the strength was detected when notched specimens were subjected to in-situ charging. When the same tests were performed on smooth tensile specimens, the deformation results were reduced. This behavior is related to significant changes in the operative failure micromechanisms, from ductile (microvoids coalescence) in absence of hydrogen or under low hydrogen contents, to brittle (decohesion of martensite lath interfaces) under the most stringent conditions.  相似文献   
8.
Aluminum alloy bipolar plates have unique application potential in proton exchange membrane fuel cell (PEMFC) due to the characteristics of lightweight and low cost. However, extreme susceptibility to corrosion in PEMFC operation condition limits the application. To promote the corrosion resistance of aluminum alloy bipolar plates, a Ni–P/TiNO coating was prepared by electroless plating and closed field unbalanced magnetron sputter ion plating (CFUMSIP) technology on the 6061 Al substrate. The research results show that Ni–P interlayer improves the deposition effect of TiNO outer layer and increase the content of TiN and TiOxNy phases. Compared to Ni–P and TiNO single-layer coatings, the Ni–P/TiNO coating samples exhibited the lowest current density value of (1.10 ± 0.02) × 10?6 A·cm?2 in simulated PEMFC cathode environment. Additionally, potential cyclic polarization measurements were carried out aiming to evaluate the durability of the aluminum alloy bipolar plate during the PEMFC start-up/shut-up process. The results illustrate that the Ni–P/TiNO coating samples exhibit excellent stability and corrosion resistance.  相似文献   
9.
Non-noble metal catalyst with high catalytic activity and stability towards oxygen reduction reaction (ORR) is critical for durable bioelectricity generation in air-cathode microbial fuel cells (MFCs). Herein, nitrogen-doped (iron-cobalt alloy)/cobalt/cobalt phosphide/partly-graphitized carbon ((FeCo)/Co/Co2P/NPGC) catalysts are prepared by using cornstalks via a facile method. Carbonization temperature exerts a great effect on catalyst structure and ORR activity. FeCo alloys are in-situ formed in the catalysts above 900 °C, which are considered as the highly-active component in catalyzing ORR. AC-MFC with FeCo/Co/Co2P/NPGC (950 °C) cathode shows the highest power density of 997.74 ± 5 mW m?2, which only declines 8.65% after 90 d operation. The highest Coulombic efficiency (23.3%) and the lowest charge transfer resistance (22.89 Ω) are obtained by FeCo/Co/Co2P/NPGC (950 °C) cathode, indicating that it has a high bio-electrons recycling rate. Highly porous structure (539.50 m2 g?1) can provide the interconnected channels to facilitate the transport of O2. FeCo alloys promote charge transfer and catalytic decomposition of H2O2 to ?OH and ?O2?, which inhibits cathodic biofilm growth to improve ORR durability. Synergies between metallic components (FeCo/Co/Co2P) and N-doped carbon energetically improve the ORR catalytic activity of (FeCo)/Co/Co2P/NPGC catalysts, which have the potential to be widely used as catalysts in MFCs.  相似文献   
10.
One of the main challenges in the laser powder bed fusion (LPBF) process is making dense and defect-free components. These porosity defects are dependent upon the melt pool geometry and the processing conditions. Power-velocity (PV) processing maps can aid in visualizing the effects of LPBF processing variables and mapping different defect regimes such as lack-of-fusion, under-melting, balling, and keyholing. This work presents an assessment of existing analytical equations and models that provide an estimate of the melt pool geometry as a function of material properties. The melt pool equations are then combined with defect criteria to provide a quick approximation of the PV processing maps for a variety of materials. Finally, the predictions of these processing maps are compared with experimental data from the literature. The predictive processing maps can be computed quickly and can be coupled with dimensionless numbers and high-throughput (HT) experiments for validation. The present work provides a boundary framework for designing the optimal processing parameters for new metals and alloys based on existing analytical solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号