首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44578篇
  免费   2144篇
  国内免费   2222篇
电工技术   1265篇
技术理论   1篇
综合类   1531篇
化学工业   12040篇
金属工艺   8646篇
机械仪表   2034篇
建筑科学   2336篇
矿业工程   456篇
能源动力   3124篇
轻工业   2486篇
水利工程   226篇
石油天然气   984篇
武器工业   309篇
无线电   2554篇
一般工业技术   7770篇
冶金工业   1605篇
原子能技术   734篇
自动化技术   843篇
  2024年   191篇
  2023年   959篇
  2022年   1393篇
  2021年   1526篇
  2020年   1381篇
  2019年   1316篇
  2018年   1303篇
  2017年   1552篇
  2016年   1397篇
  2015年   1507篇
  2014年   2234篇
  2013年   2843篇
  2012年   2516篇
  2011年   3537篇
  2010年   2619篇
  2009年   2687篇
  2008年   2404篇
  2007年   2573篇
  2006年   2381篇
  2005年   2070篇
  2004年   1809篇
  2003年   1436篇
  2002年   1237篇
  2001年   985篇
  2000年   922篇
  1999年   743篇
  1998年   684篇
  1997年   547篇
  1996年   472篇
  1995年   382篇
  1994年   300篇
  1993年   252篇
  1992年   201篇
  1991年   132篇
  1990年   109篇
  1989年   103篇
  1988年   61篇
  1987年   28篇
  1986年   35篇
  1985年   25篇
  1984年   15篇
  1983年   19篇
  1982年   20篇
  1981年   17篇
  1980年   8篇
  1976年   2篇
  1960年   1篇
  1959年   3篇
  1958年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The study presents the preparation of the new magnetic nanocomposite based on PLGA and magnetite. The PLGA used to obtain the magnetic nanocomposites was synthesized by the copolymerization of lactic acid with glycolic acid, in the presence of tin octanoate [Sn(Oct)2] as catalyst, by polycondensation procedure. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3. The particles size of magnetite was 420 nm, and the saturation magnetization 62.78 emu/g, while the PLGA/magnetite nanocomposite size was 864 nm and the saturation magnetization 39.44 emu/g. The magnetic nanocomposites were characterized by FT-IR, DLS technique, SEM, VSM and simultaneous thermal analyses (TG–FTIR–MS). The polymer matrix PLGA acts as a shell and carrier for the active component, while magnetite is the component which makes targeting possible by external magnetic field manipulation. Based on the gases resulted by thermal degradation of PLGA copolymer, using the simultaneous analysis TG–FTIR–MS, a possible degradation mechanism was proposed.  相似文献   
3.
An experimental investigation on the mechanism of porosity formation during the laser joining of carbon fiber reinforced polymer (CFRP) and steel is presented. The porosity morphology and distribution were characterized by optical and scanning electron microscopy, and the thermal pyrolysis behaviors were investigated by thermal analysis and designed back-side cooling experiments. The results show that there are two types of porosities in CFRP. Porosity I only appears when the heat input is more than 77.8 J/mm. It has a smooth inner wall and distributes near the bonding interface between CFRP and steel at the central area of melted zone, which is caused by gaseous products such as CO2, NH3, H2O, and hydrocarbons produced by the pyrolysis of CFRP. Porosity II can be seen under all joining conditions. It has a rough inner wall and distributes far away from the bonding interface, concentrating at the final solidification locations. Porosity II is caused by the shrinkage of melted CFRP during solidification stage.  相似文献   
4.
The separation of iron oxide from banded hematite jasper(BHJ) assaying 47.8% Fe, 25.6% Si O2 and 2.30%Al2O3 using selective magnetic coating was studied. Characterization studies of the low grade ore indicate that besides hematite and goethite,jasper, a microcrystalline form of quartzite, is the major impurity associated with this ore. Beneficiation by conventional magnetic separation technique could yield a magnetic concentrate containing 60.8% Fe with 51% Fe recovery. In order to enhance the recovery of the iron oxide minerals, fine magnetite, colloidal magnetite and oleate colloidal magnetite were used as the coating material. When subjected to magnetic separation, the coated ore produces an iron concentrate containing 60.2% Fe with an enhanced recovery of56%. The AFM studies indicate that the coagulation of hematite particles with the oleate colloidal magnetite facilitates the higher recovery of iron particles from the low grade BHJ iron ore under appropriate conditions.  相似文献   
5.
The 2011 AASHTO Roadside Design Guide (RDG) contains perhaps the most widely used procedure for choosing an appropriate length of need (LON) for roadside barriers. However, this procedure has several limitations. The procedure uses a highly simplified model of vehicle departure, and the procedure does not allow designers to specify an explicit level of protection. A new procedure for choosing LON that addresses these limitations is presented in this paper. This new procedure is based on recent, real-world road departure trajectories and uses this departure data in a more realistic way. The new procedure also allows LON to be specified for a precisely known level of protection – a level which can be based on number of crashes, injury outcomes or even estimated crash cost – while still remaining straightforward and quick to use like the 2011 RDG procedure.  相似文献   
6.
Multi-walled carbon nanotubes (MWCNTs) were chemically functionalized to prepare thermoplastic polyurethane (PU) composites with enhanced properties. In order to achieve a high compatibility of functionalized MWCNTs with the PU matrix, polycaprolactone diol (PCL), as one of PU’s monomers, was selectively grafted on the surface of MWCNTs (MWCNT–PCL), while carboxylic acid groups functionalized MWCNTs (MWCNT–COOH) and raw MWCNTs served as control. Both MWCNT–COOH and MWCNT–PCL improved the dispersion of MWCNTs in the PU matrix and interfacial bonding between them at 1 wt% loading fraction. The MWCNT–PCL/PU composite showed the greatest extent of improvement, where the tensile strength and modulus were 51.2% and 33.5% higher than those of pure PU respectively, without sacrificing the elongation at break. The considerable improvement in both mechanical properties and thermal stability of MWCNT–PCL/PU composite should result from the homogeneous dispersion of MWCNT–PCL in the PU matrix and strong interfacial bonding between them.  相似文献   
7.
Self-healing is a smart and promising way to make materials more reliable and longer lasting. In the case of structural or functional composites based on a polymer matrix, very often mechanical damage in the polymer matrix or debonding at the matrix–filler interface is responsible for the decrease in intended properties. This review describes the healing behavior in structural and functional polymer composites with a so-called intrinsically self-healing polymer as the continuous matrix. A clear similarity in the healing of structural and functional properties is demonstrated which can ultimately lead to the design of polymer composites that autonomously restore multiple properties using the same self-healing mechanism.  相似文献   
8.
Thermal bending analysis of doubly curved laminated shell panels with general boundary conditions and laminations is presented. The equations of equilibrium are derived in the form of two coupled sets of ordinary differential equations based on a general shell theory and solved through the state-space approach in a repeated manner. It is depicted that the results of the present method are in great agreement with analytical solutions. Cylindrical shell panels with general boundary conditions and laminations, where no analytical solution is available, are solved. It is found that the present method exhibits a high convergence rate as well as presenting accurate results in all cases.  相似文献   
9.
This paper summarizes the basics of pulsed thermal nondestructive testing (TNDT) including theoretical solutions, data processing algorithms and practical implementation. Typical defects are discussed along with 1D analytical and multi-dimensional numerical solutions. Special emphasis is focused on defect characterization by the use of inverse solutions. A list of TNDT terms is provided. Applications of active TNDT, mainly in the aerospace industry, are discussed briefly, and some trends in the further development of this technique are described.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号