首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4255篇
  免费   74篇
  国内免费   163篇
电工技术   10篇
综合类   71篇
化学工业   940篇
金属工艺   995篇
机械仪表   234篇
建筑科学   65篇
矿业工程   88篇
能源动力   332篇
轻工业   23篇
石油天然气   33篇
武器工业   11篇
无线电   99篇
一般工业技术   1301篇
冶金工业   201篇
原子能技术   53篇
自动化技术   36篇
  2023年   36篇
  2022年   75篇
  2021年   133篇
  2020年   119篇
  2019年   133篇
  2018年   103篇
  2017年   121篇
  2016年   79篇
  2015年   94篇
  2014年   206篇
  2013年   257篇
  2012年   192篇
  2011年   397篇
  2010年   287篇
  2009年   342篇
  2008年   265篇
  2007年   300篇
  2006年   239篇
  2005年   168篇
  2004年   143篇
  2003年   148篇
  2002年   99篇
  2001年   86篇
  2000年   84篇
  1999年   70篇
  1998年   63篇
  1997年   48篇
  1996年   38篇
  1995年   53篇
  1994年   25篇
  1993年   24篇
  1992年   10篇
  1991年   14篇
  1990年   15篇
  1989年   10篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1983年   1篇
  1981年   3篇
排序方式: 共有4492条查询结果,搜索用时 46 毫秒
1.
以三种前驱气体(CH4-2O2、H2-0.5O2、C2H2-2.5O2)进行爆轰试验,研究了初始压力对爆轰参数的影响及规律,以测得的预混气爆轰压力、速度、胞格等性能参数表征了预混气爆轰特性。以测得的爆轰参数为依据自主设计了长度2m、内径80mm、壁厚8mm、点火能量为40J的爆轰管道。在自主设计的爆轰管道内采用氢气、氧气和四氯化钛为混合前驱体,通过气液爆轰法合成了纳米二氧化钛,采用TEM对产物进行了表征,结果表明获得的纳米二氧化钛其球形或者类球形颗粒大约为20-150nm。  相似文献   
2.
文中采用SEM、EBSD及TEM等表征手段分析了惯性摩擦焊接头在焊态及焊后热处理态下的微观组织形貌与分布特征,并研究了焊后热处理态下的接头力学性能。结果表明,焊缝区为单一等轴α晶粒,在焊态下由板条状马氏体α′相+晶界片状αp相+亚稳态β相构成,并伴随着(0001)//ND丝织构。热处理后转变为晶界片状αp相+晶内片状αs+β相,在原有丝织构的基础上形成了(21 ?1 ?3)[21 ?1 ?9]取向织构;焊缝区显微硬度最高,随着向母材区过度显微硬度逐渐降低,焊后热处理可降低焊缝区硬度,使接头硬度分布较为均匀。接头在室温下的拉伸试验均断裂于远离焊缝中心的母材区。  相似文献   
3.
The influence of electrochemical charging of hydrogen at j = ?5 mA/cm2 for 6, 12, 48 and 96 h on the structural and the mechanical behavior of wrought and electron beam melting (EBM) Ti–6Al–4V alloys containing 6 wt% β and similar impurities level was investigated. The length of the α/β interphase boundaries in the EBM alloy was larger by 34% compared to that in the wrought alloy. The small punch test (SPT) technique was used to characterize the mechanical behavior of the non-hydrogenated and hydrogenated specimens. It was found that the maximum load and the displacement at maximum load of the wrought alloy remained nearly stable after 6 h of charging, showing a maximum decrease of ~32% and 11%, respectively. Similarly, hydrogenation of the EBM alloy resulted in a gradual degradation in mechanical properties with charging time, up to ~81% and 86% in pop-in load and displacement at the “pop-in” load, respectively. The mode of fracture of the wrought alloy changed from ductile to semi-brittle with mud-cracking in all hydrogenated specimens. In contrast, the mode of fracture of the EBM alloy changed from a mixed mode ductile-brittle fracture to brittle fracture with star-like morphology. The degraded mechanical properties of the EBM alloy are attributed to its α/β lamellar microstructure which acted as a short-circuit path and enhanced hydrogen diffusion into the bulk as well as δa and δb hydride formation on the surface. In contrast, a surface layer with higher concentration of δa and δb hydrides in the wrought alloy served as a barrier to hydrogen uptake into the bulk and increased the alloy resistivity to hydrogen embrittlement (HE). This study shows that EBM Ti–6Al–4V alloy is more susceptible to mechanical degradation due to HE than wrought Ti–6Al–4V alloy.  相似文献   
4.
Here we report the synthesis of 1D TiO2 sub 10 nm nanowires through one pot hydrothermal method in an alkaline NaOH medium at 95 °C for 36 h. Further, these TiO2 nanowires were embellished with silver (Ag) using polyvinylpyrrolidone (PVP) and ethylene glycol (EG) based solvothermal route at 160 °C for 4 h. With Ag decoration the photocatalytic activity was enhanced and the complete photooxidation of Methylene Blue (MB) was achieved in 35 min under optimized conditions. Super- and ultra-hydrophobic coating on cotton fabric exhibited a consistent antibacterial activity with enhanced UV-blocking property. Enhanced multifunctional properties observed were primarily attributed to the formation of Ag decorated 1D sub 10 nm TiO2 nanowires heterojunctions achieved using facile chemical route. Hence, such multiple functionalities make the 1D sub 10 nm TiO2 nanowires good candidate for industrial and domestic wastewater treatment.  相似文献   
5.
Porous materials with low stiffness and high strength are sought as implant materials to prevent stress shielding and fracture during in vivo use. This study proposes a powder metallurgy-based space holder technique to fabricate porous titanium with mechanical performance suitable for implant materials. Mixed powders of titanium and sodium chloride were sintered at low temperature using spark plasma sintering, and then the sodium chloride was dissolved in water. As a result, uniform porous titanium (UP-Ti) with a wide range of microstructures: porosity from 26% to 80% and average pore size from 75 μm to 475 μm was successfully fabricated. Also, functionally graded porous titanium (FGP-Ti) was successfully fabricated, in which porous titanium with high porosity and dense titanium were placed at the inside and surface, respectively. The stiffness of UP-Ti was comparable to that of natural bones, but its strength was lower than that of natural bones, which would be insufficient for use as an implant. In contrast, the mechanical performance of FGP-Ti was improved, compared with UP-Ti with the porosity comparable to the average porosity of FGP-Ti: its strength was higher than that of natural bones and its stiffness was comparable to that of natural bones. These results imply that porous titanium, especially functionally graded porous titanium, is a candidate metal for implants used to replace heavily loaded natural bone.  相似文献   
6.
Developing non-noble metal oxygen reduction reaction (ORR) electrocatalysts with high performance, excellent stability, and low-cost is crucial for the industrialization of fuel cells. Herein, trace level Co modified 3D hybrid titanium carbonitride MXene and boron-carbon-nitrogen nanotubes catalyst (TiCN–BCN–Co) is fabricated by spray-lyophilization and high-temperature pyrolysis. This strategy not only avoids the oxidation of Ti3C2Tx MXene, but also introduces nitrogen atoms into the titanium carbide lattice to form a more electrocatalytically active TiCN crystal phase. The obtained TiCN–BCN–Co exhibits superior ORR catalytic activity with a positive half-wave potential of 0.83 V vs. RHE and outperforms commercial Pt/C in terms of stability and methanol tolerance. Impressively, the Zn-air battery with TiCN–BCN–Co cathode achieves a superior specific capacity of 791 mAh g?1 and long-term stability of 200 h.  相似文献   
7.
The wetness impregnation method was used to synthesize 0.1% CdSe/TiO2 photocatalysts with different atomic molar ratios (90–10, 70–30, 50–50, and 30–70). These catalysts were characterized by XRD, SEM-EDX and mapping, TEM-EDS, UV–VIS spectroscopy, fluorescence spectroscopy, XPS, TPR, TPO, and TPD analyses. Cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) analyses were performed to examine the photocatalytic activity for photocatalytic fuel cells (PFCs) in glucose solution in the dark and under UV illumination. The characterization analyses revealed that anatase TiO2 formed the catalyst and electronic structure and surface properties changed when doped with metal. The photocatalytic glucose electrooxidation (PGE) results demonstrate that the 0.1% CdSe(50-50)/TiO2 catalyst has higher photocatalytic activity, stability, and resistance than other catalysts both in the dark (2.71 mA cm?2) and under UV illumination (7.20 mA cm?2). These results offer a promising new type of photocatalyst for PFC applications.  相似文献   
8.
The present work addresses the potentialities of Pt–Ru nanoparticles deposited on a graphene oxide (RGO) and TiO2 composite support towards electrochemical oxidation of ethanol in acidic media relevant for fuel cell applications. To immobilize platinum–ruthenium bimetallic nanoparticles on to an RGO-TiO2 nanohybrid support a simple solution-phase chemical reduction method is utilized. An examination using electron microscopy and energy dispersive X-ray spectroscopy (EDS) indicated that Pt–Ru particles of 4–8 nm in diameter are dispersed on RGO-TiO2 composite support. The corresponding Pt–Ru/RGO-TiO2 nanocomposite electrocatalyst was studied for the electrochemical oxidation of ethanol in acidic media. Compared to the commercial Pt–Ru/C and Pt/C catalysts, Pt–Ru/RGO-TiO2 nanocomposite yields higher mass-specific activity of about 1.4 and 3.2 times, respectively towards ethanol oxidation reaction (EOR). The synergistic boosting provided by RGO-TiO2 composite support and Pt–Ru ensemble together contributed to the observed higher EOR activity and stability to Pt–Ru/RGO-TiO2 nanocomposite compared with other in-house synthesized Pt–Ru/RGO, Pt/RGO and commercial Pt–Ru/C and Pt/C electrocatalysts. Further optimization of RGO-TiO2 composite support provides opportunity to deposit many other types of metallic nanoparticles onto it for fuel cell electrocatalysis applications.  相似文献   
9.
《Ceramics International》2022,48(4):5083-5090
Directional lamellar porous titanium scaffolds are widely used as bone implant bearing materials because of their anisotropic pore structure. Their mechanical properties can be effectively improved by enhancing the strength of pore walls through the introduction of ceramics. In this work, porous titanium implants were prepared by freeze casting combined with TiH2 decomposition. The graphene was introduced into the pore walls of porous titanium, which could transform into titanium carbide (TiC) in situ upon sintering. TiC was evenly distributed in the lamellar pore walls, and the interface was well bonded. The compression strength of the fabricated implants was up to 389.94 MPa when the graphene content was 3 wt%, which was 377.8% times as high as the porous titanium. The crack propagation was resisted by TiC because of the “pinning” effect on the pore wall. Some of TiC were pulled out from the matrix, and others were fractured. The strength of the fabricated implants was improved significantly by the large consumption of fracture energy. Also, fabricated porous titanium implants with TiC are suitable for bone implantation.  相似文献   
10.
《Ceramics International》2022,48(4):5154-5161
An investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号