首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26530篇
  免费   2048篇
  国内免费   974篇
电工技术   661篇
综合类   1631篇
化学工业   8699篇
金属工艺   1961篇
机械仪表   1843篇
建筑科学   848篇
矿业工程   678篇
能源动力   634篇
轻工业   3232篇
水利工程   327篇
石油天然气   2118篇
武器工业   121篇
无线电   1229篇
一般工业技术   3049篇
冶金工业   1245篇
原子能技术   285篇
自动化技术   991篇
  2024年   71篇
  2023年   370篇
  2022年   656篇
  2021年   846篇
  2020年   729篇
  2019年   659篇
  2018年   640篇
  2017年   782篇
  2016年   811篇
  2015年   847篇
  2014年   1244篇
  2013年   1550篇
  2012年   1836篇
  2011年   2045篇
  2010年   1509篇
  2009年   1592篇
  2008年   1314篇
  2007年   1822篇
  2006年   1677篇
  2005年   1493篇
  2004年   1310篇
  2003年   1088篇
  2002年   897篇
  2001年   743篇
  2000年   593篇
  1999年   477篇
  1998年   388篇
  1997年   317篇
  1996年   255篇
  1995年   216篇
  1994年   153篇
  1993年   137篇
  1992年   110篇
  1991年   80篇
  1990年   69篇
  1989年   39篇
  1988年   34篇
  1987年   18篇
  1986年   21篇
  1985年   13篇
  1984年   10篇
  1983年   20篇
  1982年   12篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1976年   4篇
  1974年   5篇
  1962年   4篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2021,47(23):33106-33119
K9 optical glass is one of the typical components in optical systems. However, because of its poor fracture resistance, it is difficult to polish it with ultra-precision and high-efficiency and without any surface damage simultaneously. The emergence of the obliquely axial ultrasonic vibration-assisted polishing (UVAP) method can solve this problem which encounters in polishing efficiency and shape accuracy. However, due to the unclear material removal profile (MRP) mechanism, obliquely axial UVAP is not widely used in the processing field. This paper introduces the obliquely axial UVAP method in research processes, mainly focusing on the fixed point MRP analysis of the obliquely axial UVAP. Based on Hertz's contact theory, polishing pressure, the length of the semi-long axis (LLA) and the length of the semi-short axis (LSA) of the contact area are calculated under ultrasonic vibration conditions. Meanwhile, the relative linear velocity distribution of the oblique polishing tool in the instantaneous contact area is modeled by mathematical geometry method. A novel model of the MRP distribution for obliquely axial UVAP is proposed following the Preston equation. Subsequently, a series of polishing experiments were carried out to verify this model. The results show that the numerical model has good agreement with the experimental results on MRP, LLA, LSA, material removal depth and material removal rate (MRR). In addition, the material removal capability can be significantly improved by larger ultrasonic amplitude and larger oblique angle. This model not only more clearly elucidates the processing mechanism of obliquely axial UVAP, but also provides theoretical support for the polishing of free-form optical lenses.  相似文献   
2.
SiC is a promising functional ceramic material with many great properties. High concentrated SiC slurry with excellent rheology and stability is required in some processes of ceramic forming. In this work, the dispersion of SiC powders was obviously improved by ternary modifiers: γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560), sodium humate and sodium dodecyl sulfate (SDS). Modified SiC slurry showed the lowest viscosity of 0.168 Pa s at a solid content of 50 vol%. The maximum absolute value of zeta potential of SiC increased from 47.3 to 61.6 mV by modification. Sedimentation experiments showed that a highly stable suspension of modified SiC was obtained at pH 10. SiC green body with high density of 2.643 g/cm3 was prepared with modified powders by slip casting. X-ray photoelectron spectra (XPS) and thermogravimetry (TG) measurements indicated the adsorption of modifiers on SiC surface. Therefore, modified SiC powders could stably disperse in aqueous media due to the increase of electrosteric repulsion between particles. The novel strategy used in this study could further improve the dispersion of SiC powders.  相似文献   
3.
Cellulose nanocrystals (CNCs) are a kind of sustainable nanoparticle from biomass, which are widely used as reinforcing filler and assembly building block for high-performance composites and function materials including biomaterial, optics, and so forth. Here, their unique advantages in material applications were reviewed based on their rod-like morphology, crystalline structure, dimension-related effects, and multi-level order structure. Then, we focused on the molecular engineering of CNCs, including the structure and physicochemical properties of their surface, along with surface modification methods and steric effects. We further discussed the performance-improvement and functionalization methods based on multi-component complex systems, together with the effects of surface molecular engineering on the performance and functions. Meanwhile, methods of optimizing orientation in uniaxial arrays were discussed along with those of enhancing photoluminescence efficiency via surface chemical modification and substance coordination. In the end, we prospected the design, development, and construction methods of new CNCs materials.  相似文献   
4.
This paper presents an approach to modify CAD/CAM generated motion profiles for wire bending machines, in order to damp wire oscillations without decreasing machine throughput. Two different methodologies are presented, both leveraging on a simple and easily identifiable model of wire oscillations, the first one based on a filtering approach, the second one on an optimisation approach. The two methodologies are both characterised by a low computational complexity, allowing them to be integrated directly in the bending machine user interface, and can rely on a standard camera to identify wire oscillation parameters. A thorough experimental validation of the approaches is also presented, showing promising results in damping oscillations with wires of different materials.  相似文献   
5.
《Ceramics International》2022,48(7):9426-9433
A gradient porous ceramic membrane with surface super-hydrophilic and underwater super-oleophobic performance was prepared by combining hydrogel directional freezing method and low temperature oxidation process. The effects of solid contents and sintering temperature on the ceramic membrane matrix were examined. The reaction time and synthesis temperature on the TiO2 nanowire array were also evaluated. In addition, the related effects on pore size distribution, permeation flux, contact angle, and oil-in-water emulsion separation were systematically investigated. The ceramic membrane matrix pore size changed from 0.5 μm to 25 μm gradually, indicating the gradient structure controlled by the growth of ice. The super-hydrophilic and underwater super-oleophobic performance of ceramic membrane surface was obtained with surface modification by TiO2 nanowire array, and the surface water contact angle and underwater oil contact angle were less than 5° and over 158°, respectively. The bonding strength between TiO2 nanowire and ceramic membrane matrix was high enough to withstand ultrasonic waves. The ceramic membrane modified with TiO2 nanowire array was used for 1000 ppm diesel oil-in-water emulsion separation, and the stable separation efficiency and flux were about 97% and 100–200 L/(m2 h bar) even after 10 filtration cycles.  相似文献   
6.
《Ceramics International》2022,48(4):5154-5161
An investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.  相似文献   
7.
Hexagonal boron nitride (h-BN) as a layered inorganic nonmetallic material has been widely used. Hydrogen peroxide (H2O2) modification can trigger exfoliation and afford abundant B–OH active sites at edge of h-BN, which can enhance methane activation ability. Introducing tungsten oxide (WO3) to h-BN produces a similar effect, because doping WO3 into h-BN resulted in electron transfer to N, inducing fracture of B–N bond, resulting in N vacancy (triboron center), exposing more B sites and promoting the generation of B–OH. Significantly, the introduction of WO3 on the modified h-BN dramatically increased the concentration of B–OH compared with the unmodified h-BN, because H2O2 modification weakened B–N bond. By means of XRD, TEM, XPS,EPR, FT-IR, it is proved that the high concentration of B–OH active sites contributed to activating C–H bond, thus methane conversion and CO and H2 selectivity were significantly improved.  相似文献   
8.
Today, utility meters for water are tested for measurement behavior at stable operating conditions at specified flow rates as part of the approval process. The measurement error that occurs during start and stop or when changing between flow rates may not be taken into account. In addition, there are new technologies whose measuring behavior under real-world conditions is only known to a limited extend. To take these facts into account, a new method has been developed and tested to determine the measurement behavior of water meters under dynamic load profiles as they occur in the real application. For this purpose, a test rig for flow rate measurement was extended by a cavitation nozzle apparatus and the generation of dynamic load profiles was validated. For the cavitation nozzles used, possible factors influencing the flow rate, such as temperature and purity of the water as well as the upstream pressure were investigated. Using different types of domestic water meters, the applicability of the dynamic test procedure was demonstrated and the measurement behavior of the meters was characterised.  相似文献   
9.
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.  相似文献   
10.
《Ceramics International》2022,48(4):4401-4423
Nano-zirconia has been widely applied due to its excellent physical and chemical properties (e.g., high strength, corrosion resistance, oxygen ion conductivity). Existing preparation methods of nano-zirconia tend to require long reaction time, and the sizes of final particles are large with uneven distributions. Sub-/supercritical hydrothermal synthesis of nanoparticles is favored by researchers owing to controllable reaction process, uniform particle size distribution, good reproducibility, short reaction time, high conversion rate and harmlessness to environment. In this paper, the characteristics and mechanisms of dissolution, crystallization and growth of nano-zirconia during sub-/supercritical hydrothermal synthesis are systematically reviewed. The influences of process and material parameters on the size and purity of particles are analyzed. Then, the reaction mechanism and product phase transition mechanism during hydrothermal synthesis of zirconia are summarized to provide a theoretical reference for the oriented preparation. Finally, the improvement and commercialization of sub-/supercritical hydrothermal synthesis technology are evaluated, and the future research topics are proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号