首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17173篇
  免费   1768篇
  国内免费   989篇
电工技术   4396篇
技术理论   1篇
综合类   1301篇
化学工业   803篇
金属工艺   1497篇
机械仪表   3142篇
建筑科学   375篇
矿业工程   445篇
能源动力   330篇
轻工业   143篇
水利工程   352篇
石油天然气   226篇
武器工业   193篇
无线电   2673篇
一般工业技术   1182篇
冶金工业   503篇
原子能技术   95篇
自动化技术   2273篇
  2024年   23篇
  2023年   218篇
  2022年   361篇
  2021年   450篇
  2020年   416篇
  2019年   332篇
  2018年   396篇
  2017年   531篇
  2016年   607篇
  2015年   774篇
  2014年   1037篇
  2013年   1224篇
  2012年   1215篇
  2011年   1456篇
  2010年   1135篇
  2009年   1143篇
  2008年   1087篇
  2007年   1328篇
  2006年   1133篇
  2005年   879篇
  2004年   652篇
  2003年   657篇
  2002年   509篇
  2001年   479篇
  2000年   389篇
  1999年   332篇
  1998年   242篇
  1997年   208篇
  1996年   186篇
  1995年   130篇
  1994年   103篇
  1993年   72篇
  1992年   58篇
  1991年   41篇
  1990年   37篇
  1989年   24篇
  1988年   19篇
  1987年   9篇
  1986年   6篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(4):4710-4721
In this study, AA5083 sheets were reinforced with four different hybrid nanoparticles by friction stir processing (FSP) for the development of surface nanocomposites used in advanced engineering applications. The present research focused on improving the properties and tribological behaviour of AA5083 alloy surfaces, including novel hybrid nanoparticles and the intermetallic phase formed during FSP. A tribometer tester with a constant normal load was used to examine the tribological performance of the hybrid composites. After the wear test, a surface profiler inspector was used to analyse the morphology and surface roughness of the examined materials. The Vickers micro-hardness of the base metal and the manufactured composites were measured. During FSP, a new intermetallic phase of AlV3 was successfully formed at 300–400 °C in the hybrid nanocomposites containing VC particles. The reinforcements resulted in additional grain refining than FSP. The AA5083/Ta2C–Al2O3 exhibited the greatest grain refinement, a sixty-fold reduction in grain size compared to that of the base alloy. The results revealed that the hybrid nanocomposites containing VC particles demonstrated the most significant microhardness values inside the stirred zone as a result of the presence of the AlV3 phase, which was increased by 25–30%. Moreover, the mechanical properties were significantly improved for all manufactured nanocomposites. The tensile strength was increased by 28% through the hybridisation of AA5083 using a hybrid of VC-GNPs. The dispersion of Ta2C-GNPs and VC-GNPs in the matrix led to excellent interfacial adhesion, resulting in an enhancement in the mechanical properties. The AA5083/VC-GNPs surface composite outperformed other manufactured composites regarding wear resistance. In addition, due to GNPs soft nature, it reduced the coefficient of friction (COF) of the manufactured composites by 20–25% compared to other reinforcements.  相似文献   
2.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
3.
Analog integrated circuit design has as integral parts both analytical reasoning and numerical validation in the process from topology construction to sizing. Given a circuit topology, different circuit sizing results can be obtained from different processes of sizing inference. Sizing methods by simulation-based numerical searching have been a continuously studied subject. However, almost all approaches in this category require an overwhelming number of circuit simulations to arrive at an optimized sizing result. On the other hand, many published manual sizing methods by using the conventional device equations also require repeated SPICE simulations to correct the equation-based sizing results. This paper proposes a systematic gm/ID-based initial sizing method specifically customized for designing multiple-stage operational amplifiers (Op Amps). A main feature of the proposal is to use circuit-level design equations as constraints on the gm/ID table lookup method to substantially reduce the uncertainty in the sizing calculations. As a result, a significant amount of SPICE based correction work can be reduced to complete an initial sizing. The proposed sizing procedure includes a few regular sizing rules customized to the configuration of multi-stage Op Amps. We validate the proposed sizing method by application to several multi-stage Op Amp examples with a capacitive load or Miller compensation. Simulations have justified that the produced initial sizing results can achieve most of the prespecified design targets.  相似文献   
4.
《Ceramics International》2022,48(3):3261-3273
C/C–SiC composites have enormous potential as a new generation of brake materials. It is worth studying the friction and wear behaviours of these materials in special environments to ensure the safe and effective braking of trains in practical applications. In this study, the braking behaviours and wear mechanisms of C/C–SiC mating with iron/copper-based PM in dry, wet and salt fog conditions are compared in detail. The results show that the coefficient of friction (COF) in the wet condition is reduced by 14.13% compared with that under the dry condition. The COF value of the first braking under salt fog condition is increased by 12.27% and 30.75% compared to the dry and wet conditions, respectively. Additionally, the tail warping phenomenon of the braking curve disappears in wet condition, which is attributed to the weak adhesion of friction interfaces and the lubrication of the water film. The main wear mechanisms of C/C–SiC mating with iron/copper-based PM under dry condition are adhesive, fatigue and oxidation wear. However, the dominant wear in wet condition is abrasive wear. The cooling and lubrication of water reduce the tendency of thermal stress, and weaken adhesive and fatigue wear. Furthermore, salt fog can accelerate the corrosion of alloy friction film, leading to the damage of friction film. Meanwhile, the third body particles formed in salt fog condition participate in the braking process. The wear mechanisms in salt fog condition are dominated by abrasive and delamination wear.  相似文献   
5.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
6.
《Ceramics International》2022,48(12):16944-16955
Herein, the influence of the impact angle and Ni content on the wear behavior of Mo2NiB2–Ni cermets was studied using an erodent-carrying slurry comprising artificial seawater and SiO2 sands. The results reveal that the material loss may be attributed to the wear damage caused by SiO2 sands because cermets are expected to exhibit good corrosion resistance in artificial seawater. The relative density of cermets markedly influences their resistance to wear damage, and the material loss experienced by cermets with poor relative density is 2–4 times higher than that of cermets with good relative density; this occurs because a higher relative density can markedly enhance the mechanical properties and reduce the defects in the cermets. Moreover, the results indicate that as the impact angle increases from 0° to 60°, the manifestation of the wear mechanism changes from damaging the Ni binder phase (caused by single cutting wear) to damaging both the Mo2NiB2 ceramic and Ni binder phases due to the combination of cutting wear and impact wear. The wear damage is dominated by the cutting wear and impact wear from SiO2 sand at the low and high impact angles, respectively. Furthermore, the severe deterioration of the single ceramic skeleton at high impact angles indicates that the synergistic influence of the Mo2NiB2 ceramic and Ni binder phases on enhancing the wear resistance of the cermets intensifies at high impact angles.  相似文献   
7.
《Ceramics International》2022,48(20):30052-30065
The present work is attempted to improve the microhardness and wear properties of AISI 1020 steel by depositing TiB2–Fe composite coating using tungsten inert gas (TIG) cladding. In this study, different compositions of TiB2–Fe paste form were preplaced on the substrate plates and then TIG heat input was applied to deposit hard composite coating layer. The main objective of the present work was to explore the influence of TIG input current as well as iron content on the microstructure and surface properties of deposited coatings. Microhardness, microstructural and phase characterization of the coating have been done by the Vickers microhardness tester, scanning electron microscope (SEM), Energy dispersive spectroscopy (EDS) and X-ray diffractrometer (XRD). The results showed that the microhardness of the TiB2–Fe coating was strongly influenced by the composition of the coating materials as well as the TIG processing current. The microhardness increases with decreasing Fe contents in the coating materials with constant processing current (90 A) as well as it also increases with decreasing processing current with the fixed composition of coating materials (80TiB2–20Fe). The maximum average microhardness found was 3082 HV0.1 for the coating of 100TiB2–0Fe composition ratio and 90 A processing current which was about 18 times higher than that of the substrate average microhardness value (163 HV0.1). Average wear rate evaluated by considering weight loss of the TIG cladded samples using pin on disc tribometer by the sliding distance of 864 m and 20 N normal loads. The wear results also showed that the coating contains 100 wt% of TiB2 (0 wt% of Fe) exhibited lower rate of wear 6.74 × 10?8 g/Nm which is about 24 times lower as compared to AISI 1020 mild steel wear rate (166.31 × 10?8 g/Nm).  相似文献   
8.
《Ceramics International》2022,48(20):29601-29613
Sliding wear behaviors of atmospheric plasma-sprayed Yttria Stabilized Zirconia (YSZ) coating mated with four metallic or ceramic counterparts (Si3N4, Al2O3, GCr15 and ZrO2) were investigated. It has been found that YSZ coatings in contact with Si3N4 and GCr15 show better tribological performances than the other cases, which is due to the formation of the tribolayer mainly consisting of Si3N4 and Fe2O3 respectively on the worn surfaces. In the case of YSZ coating-Al2O3 and YSZ coating-ZrO2 tribopairs, the wear debris are more irregular and larger in size, resulting in severe abrasive wear and brittle fracture of debris particles. In particular, the specific wear rate of YSZ coating sliding against GCr15 is negative due to the significant material transfer of the tribo-oxide layer, while that of YSZ coating sliding against ZrO2 is the highest. Amorphization of the wear particles appears in the four cases due to the repeated mechanical action. It has been demonstrated that the wear of YSZ coating deteriorates with the increased flash temperature between the contact surfaces during rubbing process.  相似文献   
9.
Al2O3 and Ti-doped Al2O3 nanocomposite ceramic coatings were prepared by using a sol-gel dip-coating process. Corrosion and wear resistance of Al2O3 ceramic coatings in relation to Ti amount were carried out using pin-on-disk tribotester, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Surface characterizations before and after the corrosion and wear tests were investigated by the scanning electron microscope (SEM) and X-ray diffraction (XRD) and hardness analysis. The results of corrosion and wear tests exhibited that the corrosion and wear resistance of nanocomposite ceramic coatings became better than uncoated samples. Also, corrosion and wear resistance of nanocomposite ceramic coatings improved with Ti doping content increased.  相似文献   
10.
Application of tribology in food systems has primarily focused on liquids and semi-solids. The present study examined texture perception in a solid food, using apples as the proof-of-concept. The study aimed to assess a) the ability of tribological measurements to predict a multicomponent sensory property (mealiness) in hard food, and b) the impact of two common motion patterns (rotational and linear reciprocating) on tribological measurements and mathematical correlations with sensory texture of a hard food. The textures of ten apple varieties were evaluated by a trained sensory panel while friction and wear behavior were measured instrumentally. Spearman correlations indicated that texture attributes (crisp, juicy, mealy, and rate of melt) significantly correlated with total penetration depth (p < 0.05) and with friction coefficients during the transient (non-equilibrium) phase (p < 0.05), but not with friction coefficients from the steady-state phase in both rotational and linear tribology (p > 0.05). This was an important finding as the steady-state phase is predominantly used in food tribology research, yet our findings showed poor correlations with steady-state data, while showing strong correlations with sensory perception in the transient phase. The strong mathematical correlations found in the transient phase suggest that test conditions that provoke a dynamic friction response from the sample may more closely resemble the conditions under which humans perceive friction during oral processing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号