首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   2篇
  国内免费   4篇
电工技术   2篇
化学工业   122篇
金属工艺   23篇
机械仪表   2篇
能源动力   19篇
一般工业技术   26篇
冶金工业   8篇
原子能技术   2篇
自动化技术   1篇
  2023年   8篇
  2022年   16篇
  2021年   15篇
  2020年   5篇
  2019年   14篇
  2018年   11篇
  2017年   10篇
  2016年   8篇
  2015年   3篇
  2014年   12篇
  2013年   14篇
  2012年   9篇
  2011年   12篇
  2010年   10篇
  2009年   15篇
  2008年   10篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有205条查询结果,搜索用时 15 毫秒
1.
Ceria-based solid solutions are important materials for high- and medium-temperature electrochemical applications. However, the stabilities of both binary and ternary ceria-based solid solutions are insufficient at elevated temperatures, which limits their application as solid electrolytes or SOFC cathodes. Data on the high-temperature stability of ceria-based ceramics are unavailable in the literature. In the present study, we report a thermodynamic stability investigation of Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions. The thermal prehistories of binary and ternary systems were investigated using STA, XRD, and ESCA techniques. The vaporization processes were investigated in the temperature range of 1577–2227°С via the Knudsen effusion mass spectrometry technique. Using data on the component activity in solid-phase thermodynamic properties of Y2O3-CeO2 solid solutions, which is represented as the Gibbs energy, the excess Gibbs energy was calculated as a function of the ceria mol. %. It was shown that the reduction of Ce4+ to Ce3+ in Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions corresponds to less-negative Gibbs energy compared to ZrO2-CeO2 solid solutions.  相似文献   
2.
Gadolinium zirconate (GZ) is an attractive material for thermal barrier coatings (TBCs). However, a single layer GZ coating has poor thermal cycling life compared to Yttria Stabilized Zirconia (YSZ). In this study, Solution Precursor High Velocity Oxy-Fuel (SP-HVOF) thermal spray was used to produce a double layer GZ/YSZ TBC and compared the thermal cycling performance with the single layer YSZ TBC. The temperature behaviour of the solution precursor GZ was studied, and single splat tests were carried out to obtain an optimised spray parameter. In thermal cycling tests, the single-layer YSZ reached 20 % failure at 85 ± 5 cycles, whereas the double-layer GZ/YSZ was at 70 ± 15 cycles. The single-layer failed at the topcoat/TGO interface, whereas the double-layer failed at GZ/YSZ interface and topcoat/TGO interface. Moreover, Gd diffusion occurred near the GZ/YSZ interface, resulting in porosities in the GZ layer.  相似文献   
3.
Some chemical impurities enhance sintering kinetics of ceramic Thermal Barrier Coatings (TBCs) which can cause their premature failure during operation in gas turbine engine by causing reduction in coating’s strain compliance as well as faster bond-coat oxidation due to increased thermal conductivity. Certain chemical impurities are also believed to suppress resistance to tetragonal to monoclinic phase transformation in 8YSZ, which can also be an important factor regarding TBC’s performance. Most of the impurities and some of the monoclinic phase present in the powder feedstocks can survive into the as-sprayed coating. Therefore, there is a general trend towards OEMs requiring the lowest amounts of chemical impurities and the lowest amounts of monoclinic phase in the powder feedstocks. This paper presents a comprehensive investigation aimed at understanding the role and the relative importance of the chemical and phase purities of the powder feedstock for the properties and performance of thick 8YSZ TBCs.  相似文献   
4.
Conventional sintering of undoped Y2O3 requires temperatures above 1400 °C for a few hours. We show that it can be sintered nearly instantaneously to nearly full density at furnace temperature of 1133 °C under a DC applied field of 500 V/cm. At 1000 V/cm sintering occurs at 985 °C. The FLASH event, when sintering occurs abruptly, is preceded by gradually accelerated field-assisted sintering (FAST). This hybrid behaviour differs from earlier work on yttria-stabilized zirconia where all shrinkage occurred in the flash mode. The microstructure of flash-sintered specimens indicated that densification was accompanied by rapid grain growth. The single-phase nature of flash-sintered Y2O3 was confirmed by high-resolution transmission electron microscopy. The non-linear rise in conductivity accompanying the flash led to Joule heating. It is postulated that densification and grain growth were enhanced by accelerated solid-state diffusion, resulting from both Joule heating and the generation of defects under the applied field.  相似文献   
5.
In order to reduce the interaction between the Ti alloys and ceramic shell during the casting, materials with high thermal and chemical inertness were used in investment casting. An investigation was undertaken to analyze the influence of the change of binder systems on the slurries, facecoats and the thermo-chemical properties of the facecoat systems using an Y2O3–ZrO2 filler material. The results showed that, using alumina-sol as the binder in the slurry gave the longest life of around three days followed by that using the commercially available zirconia-sol at around 6 h, and the yttria sol based slurry giving a shortest life of around 1.5 h. Meanwhile using the alumina-sol can also enhance the facecoat sintering properties. There was no obvious evidence observed that the change of the binder system influenced the facecoat chemical inertness.  相似文献   
6.
Frequency dependence of the densification behavior of undoped Y2O3 sintered by the AC-flash sintering was systematically investigated at 500 V·cm?1 over a frequency range from 0.05 Hz to 1 kHz. The Y2O3 bodies sintered under an AC field showed a uniform microstructure, without an asymmetric grain size distribution between the electrodes. Almost fully-densified Y2O3 body was consolidated at 1 kHz exhibited a relative density greater than 99 % and an average grain size of 1.6 μm. The almost full densification probably resulted from the high input power at the relatively high onset temperature of 1300 °C at this frequency. The temperature dependence of the power dissipation during the AC-flash sintering experiments can be ascribed to the periodic fluctuations of the specimen temperature at low frequencies and to the phase shift between the applied field and the specimen current at high frequencies.  相似文献   
7.
The influence of a microwave hybrid heat treatment (MHH) on the surface and in-depth mineralogical transformation of pre-sintered 3Y-PSZ was investigated. 3Y-PSZ samples were prepared by slip casting and sintered by conventional firing (1270 °C). Then, different MHH treatments from 5 to 15 min. at 1200 °C were applied to obtain a fully stabilized 3Y-TZP. The monoclinic fraction depth profiles in the first micrometres (up to 5) of thickness were investigated by means of the grazing incident X-ray diffraction technique (GIXRD). A good sintering degree with practically nil closed porosity and grain growth was achieved after MHH of 15 min. MHH increases the tetragonal phase content both in the surface and in-depth, reducing completely the monoclinic phase shell typically found after conventional sintering. A new parabolic model is proposed for the convoluted monoclinic fraction depth profile, which through the value of its horizontal asymptote allows the determination of the monoclinic shell thickness.  相似文献   
8.
《Ceramics International》2015,41(7):8785-8790
In this study, 3 mol% yttria stabilized zirconia (3YSZ) is investigated as a SOFC electrolyte alternative to 8 mol% yttria stabilized zirconia (8YSZ). The mechanical and electrochemical properties of both materials are compared. The mechanical tests indicate that the thickness of 3YSZ can be reduced to half without sacrificing the strength compared to 8YSZ. By reducing the thickness of 3YSZ from 150 µm to 75 µm, the peak power density is shown to increase by around 80%. The performance is further enhanced by around 22% by designing of novel electrode structure with regular cut-off patterns previously optimized. However, the cell with novel designed 3YSZ electrolyte exhibits 30% lower maximum power density than that of the cell with 150 µm-thick standard 8YSZ electrolyte. Nevertheless, the loss in the performance may be tolerated by decreasing the fabrication cost revealing that 3YSZ electrolyte with cut-off patterns can be employed as SOFC electrolyte alternative to 8YSZ.  相似文献   
9.
《Ceramics International》2015,41(7):8305-8311
Plasma spray physical vapor deposition (PS-PVD) was used to deposit yttria stabilized zirconia (YSZ) coatings with different columnar morphologies by varying the spray distance. Although similar quasi-columnar structures were formed at the spray distances of 600 mm and 1400 mm, the formation mechanisms of particles in the coatings were different. Besides, an electron beam physical vapor deposition (EB-PVD) like columnar coating out of pure vapor was deposited at a spray distance of 1000 mm and the columnar consisted of elongated nano-sized secondary columns. The hardness and Young׳s modulus of the coatings were investigated. Compared to the other two quasi-columnar structures, the EB-PVD like columnar coating exhibited higher hardness (~9.0 GPa ) and Young׳s modulus (~110.9 GPa), mainly due to its low porosity and defect.  相似文献   
10.
Catalytic methane decomposition can become a green process for hydrogen production. In the present study, yttria doped nickel based catalysts were investigated for catalytic thermal decomposition of methane. All catalysts were prepared by sol-gel citrate method and structurally characterized with X-ray powder diffraction (XRD), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Brunauer, Emmet and Teller (BET) surface analysis techniques. Activity tests of synthesized catalysts were performed in a tubular reactor at 500 ml/min total flow rate and in a temperature range between 390 °C and 845 °C. In the non-catalytic reaction, decomposition of methane did not start until 880 °C was reached. In the presence of the catalyst with higher nickel content, methane conversion of 14% was achieved at the temperature of 500 °C. Increasing the reaction temperature led to higher coke formation. Lower nickel content in the catalyst reduced the carbon formation. Consequently, with this type of catalyst methane conversion of 50% has been realized at the temperature of 800 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号