首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92556篇
  免费   8637篇
  国内免费   5920篇
电工技术   2847篇
综合类   3707篇
化学工业   14392篇
金属工艺   27986篇
机械仪表   3630篇
建筑科学   3869篇
矿业工程   2396篇
能源动力   2056篇
轻工业   6882篇
水利工程   994篇
石油天然气   1757篇
武器工业   861篇
无线电   5307篇
一般工业技术   16199篇
冶金工业   8003篇
原子能技术   943篇
自动化技术   5284篇
  2024年   161篇
  2023年   1805篇
  2022年   3400篇
  2021年   4882篇
  2020年   3467篇
  2019年   3052篇
  2018年   3286篇
  2017年   3280篇
  2016年   3756篇
  2015年   4455篇
  2014年   5633篇
  2013年   6127篇
  2012年   5600篇
  2011年   6066篇
  2010年   4311篇
  2009年   4579篇
  2008年   4083篇
  2007年   5981篇
  2006年   6306篇
  2005年   5143篇
  2004年   3870篇
  2003年   3550篇
  2002年   2594篇
  2001年   1955篇
  2000年   1525篇
  1999年   1356篇
  1998年   977篇
  1997年   922篇
  1996年   952篇
  1995年   698篇
  1994年   648篇
  1993年   429篇
  1992年   405篇
  1991年   312篇
  1990年   309篇
  1989年   240篇
  1988年   149篇
  1987年   87篇
  1986年   57篇
  1985年   62篇
  1984年   80篇
  1983年   46篇
  1982年   55篇
  1981年   46篇
  1980年   50篇
  1966年   25篇
  1964年   34篇
  1962年   64篇
  1959年   25篇
  1955年   22篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   
2.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
3.
The Gli-B1-encoded γ-gliadins and non-coding γ-gliadin DNA sequences for 15 different alleles of common wheat have been compared using seven tests: electrophoretic mobility (EM) and molecular weight (MW) of the encoded major γ-gliadin, restriction fragment length polymorphism patterns (RFLPs) (three different markers), Gli-B1-γ-gliadin-pseudogene known SNP markers (Single nucleotide polymorphisms) and sequencing the pseudogene GAG56B. It was discovered that encoded γ-gliadins, with contrasting EM, had similar MWs. However, seven allelic variants (designated from I to VII) differed among them in the other six tests: I (alleles Gli-B1i, k, m, o), II (Gli-B1n, q, s), III (Gli-B1b), IV (Gli-B1e, f, g), V (Gli-B1h), VI (Gli-B1d) and VII (Gli-B1a). Allele Gli-B1c (variant VIII) was identical to the alleles from group IV in four of the tests. Some tests might show a fine difference between alleles belonging to the same variant. Our results attest in favor of the independent origin of at least seven variants at the Gli-B1 locus that might originate from deeply diverged genotypes of the donor(s) of the B genome in hexaploid wheat and therefore might be called “heteroallelic”. The donor’s particularities at the Gli-B1 locus might be conserved since that time and decisively contribute to the current high genetic diversity of common wheat.  相似文献   
4.
Owing to the prohibition of cosmetic animal testing, various attempts have recently been made using skin-on-a-chip (SOC) technology as a replacement for animal testing. Previously, we reported the development of a pumpless SOC capable of drug testing with a simple drive using the principle that the medium flows along the channel by gravity when the chip is tilted using a microfluidic channel. In this study, using pumpless SOC, instead of drug testing at the single-cell level, we evaluated the efficacy of α-lipoic acid (ALA), which is known as an anti-aging substance in skin equivalents, for skin tissue and epidermal structure formation. The expression of proteins and changes in genotyping were compared and evaluated. Hematoxylin and eosin staining for histological analysis showed a difference in the activity of fibroblasts in the dermis layer with respect to the presence or absence of ALA. We observed that the epidermis layer became increasingly prominent as the culture period was extended by treatment with 10 μM ALA. The expression of epidermal structural proteins of filaggrin, involucrin, keratin 10, and collagen IV increased because of the effect of ALA. Changes in the epidermis layer were noticeable after the ALA treatment. As a result of aging, damage to the skin-barrier function and structural integrity is reduced, indicating that ALA has an anti-aging effect. We performed a gene analysis of filaggrin, involucrin, keratin 10, integrin, and collagen I genes in ALA-treated human skin equivalents, which indicated an increase in filaggrin gene expression after ALA treatment. These results indicate that pumpless SOC can be used as an in vitro skin model similar to human skin, protein and gene expression can be analyzed, and it can be used for functional drug tests of cosmetic materials in the future. This technology is expected to contribute to the development of skin disease models.  相似文献   
5.
The aim of this study was to determine the influence of severe plastic deformation processing and the changes in microstructure resulting therefrom on the corrosion resistance of an Al–Mg–Si alloy. The alloy was processed using incremental equal channel angular pressing, which caused a reduction in grain size from 15 to 0.9 µm. The grain refinement was accompanied by an increase in the number of grain boundaries and dislocations, and by changes in grain orientation. However, there was no change in the size and number of intermetallic particles, which presumably resulted in a constant number of galvanic couplings. Electrochemical experiments revealed only slight differences between the samples before and after processing. Higher potential transients/oscillations upon immersion and increased corrosion currents in the vicinity of corrosion potential point to slightly higher reactivity of the most refined material. This indicates that intermetallic particles are the most crucial microstructural elements in terms of corrosion resistance. Their impact exceeds that of grain boundaries, in particular, at the stage of corrosion initiation. The development of corrosion attack is controlled more by the microstructure of the matrix as the grain refinement resulted in a less pronounced corrosion attack in comparison with the coarse-grained sample.  相似文献   
6.
It is urgently necessary to seek more simple and effective methods to construct superhydrophobic metal surfaces to improve the corrosion resistance and antifouling performance. Herein, a facile method for fabricating superhydrophobic aluminum alloy surface is developed via boiling water treatment and stearic acid modification. It is noteworthy that no prepolishing on aluminum alloy is required and no caustic reagents and typical equipments are used during the preparation procedure. Therefore, the fabrication method is quite a simple and environment-friendly technique. Both micro- and nano-scaled binary structure forms at the resultant aluminum alloy surface while long alkyl chains are grafted onto the rough aluminum alloy surface chemically. Consequently, the resultant aluminum alloy exhibits outstanding superhydrophobicity. More importantly, the superhydrophobicity has excellent universality, diversity, stability, excellent corrosion resistance, and antifouling performance. The facile preparation, excellent superhydrophobic durability, and outstanding performance are quite in favor of the practical application.  相似文献   
7.
8.
A self-nanoemulsifying drug delivery system (SNEDDS) was developed to enhance the absorption of heparin after oral administration, in which heparin was compounded with phospholipids to achieve better fat solubility in the form of heparin-phospholipid (HEP-Pc) complex. HEP-Pc complex was prepared using the solvent evaporation method, which increased the solubility of heparin in n-octanol. The successful preparation of HEP-Pc complex was confirmed by differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR) spectroscopy, NMR, and SEM. A heparin lipid microemulsion (HEP-LM) was prepared by high-pressure homogenization and characterized. HEP-LM can enhance the absorption of heparin after oral administration, significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) in mice, and reduce fibrinogen (FIB) content. All these outcomes indicate that HEP-LM has great potential as an oral heparin formulation.  相似文献   
9.
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL−1. Headspace solid phase microextraction associated to gas chromatography–mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.  相似文献   
10.
Reliable joints of Ti3SiC2 ceramic and TC11 alloy were diffusion bonded with a 50 μm thick Cu interlayer. The typical interfacial structure of the diffusion boned joint, which was dependent on the interdiffusion and chemical reactions between Al, Si and Ti atoms from the base materials and Cu interlayer, was TC11/α-Ti + β-Ti + Ti2Cu + TiCu/Ti5Si4 + TiSiCu/Cu(s, s)/Ti3SiC2. The influence of bonding temperature and time on the interfacial structure and mechanical properties of Ti3SiC2/Cu/TC11 joint was analyzed. With the increase of bonding temperature and time, the joint shear strength was gradually increased due to enhanced atomic diffusion. However, the thickness of Ti5Si4 and TiSiCu layers with high microhardness increased for a long holding time, resulting in the reduction of bonding strength. The maximum shear strength of 251 ± 6 MPa was obtained for the joint diffusion bonded at 850 °C for 60 min, and fracture primarily occurred at the diffusion layer adjacent to the Ti3SiC2 substrate. This work provided an economical and convenient solution for broadening the engineering application of Ti3SiC2 ceramic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号