首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3484篇
  免费   403篇
  国内免费   100篇
电工技术   37篇
综合类   224篇
化学工业   1791篇
金属工艺   122篇
机械仪表   41篇
建筑科学   114篇
矿业工程   53篇
能源动力   49篇
轻工业   579篇
水利工程   8篇
石油天然气   177篇
武器工业   9篇
无线电   169篇
一般工业技术   400篇
冶金工业   169篇
原子能技术   31篇
自动化技术   14篇
  2024年   7篇
  2023年   112篇
  2022年   74篇
  2021年   133篇
  2020年   113篇
  2019年   116篇
  2018年   92篇
  2017年   126篇
  2016年   113篇
  2015年   101篇
  2014年   162篇
  2013年   188篇
  2012年   285篇
  2011年   223篇
  2010年   161篇
  2009年   169篇
  2008年   127篇
  2007年   235篇
  2006年   186篇
  2005年   193篇
  2004年   179篇
  2003年   145篇
  2002年   122篇
  2001年   92篇
  2000年   97篇
  1999年   66篇
  1998年   56篇
  1997年   46篇
  1996年   44篇
  1995年   24篇
  1994年   42篇
  1993年   26篇
  1992年   18篇
  1991年   15篇
  1990年   12篇
  1989年   12篇
  1988年   11篇
  1987年   6篇
  1986年   6篇
  1985年   9篇
  1984年   21篇
  1983年   9篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1978年   1篇
  1975年   1篇
  1951年   1篇
排序方式: 共有3987条查询结果,搜索用时 17 毫秒
1.
Reactive oxygen species (ROS) plays a key role in the pathogenesis of primary open-angle glaucoma (POAG), a chronic neurodegenerative disease that damages the trabecular meshwork (TM) cells, inducing apoptosis of the retinal ganglion cells (RGC), deteriorating the optic nerve head, and leading to blindness. Aqueous humor (AH) outflow resistance and intraocular pressure (IOP) elevation contribute to disease progression. Nevertheless, despite the existence of pharmacological and surgical treatments, there is room for the development of additional treatment approaches. The following review is aimed at investigating the role of different microRNAs (miRNAs) in the expression of genes and proteins involved in the regulation of inflammatory and degenerative processes, focusing on the delicate balance of synthesis and deposition of extracellular matrix (ECM) regulated by chronic oxidative stress in POAG related tissues. The neutralizing activity of a couple of miRNAs was described, suggesting effective downregulation of pro-inflammatory and pro-fibrotic signaling pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), transforming growth factor-beta 2 (TGF-β2), Wnt/β-Catenin, and PI3K/AKT. In addition, with regards to the elevated IOP in many POAG patients due to increased outflow resistance, Collagen type I degradation was stimulated by some miRNAs and prevented ECM deposition in TM cells. Mitochondrial dysfunction as a consequence of oxidative stress was suppressed following exposure to different miRNAs. In contrast, increased oxidative damage by inhibiting the mTOR signaling pathway was described as part of the action of selected miRNAs. Summarizing, specific miRNAs may be promising therapeutic targets for lowering or preventing oxidative stress injury in POAG patients.  相似文献   
2.
Quasi‐solid‐state dye‐sensitized solar cells (DSSCs) fabricated with lightweight flexible substrates have a great potential in wearable electronic devices for in situ powering. However, the poor lifespan of these DSSCs limits their practical application. Strong mechanical stresses involved in practical applications cause breakage of the electrode/electrolyte interface in the DSSCs greatly affecting their performance and lifetime. Here, a mechanically robust, low‐cost, long‐lasting, and environment‐friendly quasi‐solid‐state DSSC using a smart thermoreversible water‐based polymer gel electrolyte with self‐healing characteristics at a low temperature (below 0 °C) is demonstrated. When the performance of the flexible DSSC is hindered by strong mechanical stresses (i.e., from multiple bending/twisting/shrinking actions), a simple cooling treatment can regenerate the electrode/electrolyte interface and recover the performance close to the initial level. A performance recovery as high as 94% is proven possible even after 300 cycles of 90° bending. To the best of our knowledge, this is the first aqueous DSSC device with self‐healing behavior, using a smart thermoreversible polymer gel electrolyte, which provides a new perspective in flexible wearable solid‐state photovoltaic devices.  相似文献   
3.
该文对乙醇/磷酸氢二钾双水相体系提取洋葱黄酮的工艺条件进行研究,考察乙醇质量分数、磷酸氢二钾质量分数、洋葱粉添加量、提取温度和提取时间对洋葱黄酮提取率的影响。通过响应面试验设计及分析确定最佳提取条件。结果表明,乙醇/磷酸氢二钾双水相体系提取洋葱黄酮的最佳条件为:乙醇质量分数41.8%,磷酸二氢钾质量分数22%,洋葱添加量0.24 g,提取温度50℃、提取时间30 min,在此条件下,洋葱黄酮的提取率达5.32%。  相似文献   
4.
Dampness affects a substantial percentage of homes and is associated with increased risk of respiratory ailments; yet, the effects of dampness on indoor chemistry are largely unknown. We hypothesize that the presence of water‐soluble gases and their aqueous processing alters the chemical composition of indoor air and thereby affects inhalation and dermal exposures in damp homes. Herein, we use the existing literature and new measurements to examine the plausibility of this hypothesis, summarize existing evidence, and identify key knowledge gaps. While measurements of indoor volatile organic compounds (VOCs) are abundant, measurements of water‐soluble organic gases (WSOGs) are not. We found that concentrations of total WSOGs were, on average, 15 times higher inside homes than immediately outside (N = 13). We provide insights into WSOG compounds likely to be present indoors using peer‐reviewed literature and insights from atmospheric chemistry. Finally, we discuss types of aqueous chemistry that may occur on indoor surfaces and speculate how this chemistry could affect indoor exposures. Liquid water quantities, identities of water‐soluble compounds, the dominant chemistry, and fate of aqueous products are poorly understood. These limitations hamper our ability to determine the effects of aqueous indoor chemistry on dermal and inhalation exposures in damp homes.  相似文献   
5.
6.
Aqueous rechargeable zinc-ion batteries (ZIBs) have attracted considerable attention as a promising candidate for low-cost and high-safety electrochemical energy storage. However, the advancement of ZIBs is strongly hindered by the sluggish ionic diffusion and structural instability of inorganic metal oxide cathode materials during the Zn2+ insertion/extraction. To address these issues, a new organic host material, poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS), has been designed and applied for zinc ion storage due to its elastic structural factors (tunable space and soft lattice). The aqueous Zn-organic batteries based on the PDBS cathode show outstanding cycling stability and rate capability. The coordination moieties (O and S) display the strong electron donor character during the discharging process and can act as the coordination arms to host Zn2+. Also, under the electrochemical environment, the malleable polymer structure of PDBS permits the rotation and bending of polymer chains to facilitate the insertion/extraction of Zn2+, manifesting the superiority and uniqueness of organic electrode materials in the polyvalent cation storage. Finally, quasi-solid-state batteries based on aqueous gel electrolyte demonstrate highly stable capacity under different bending conditions.  相似文献   
7.
Anode-free zinc batteries (AFZBs) are proposed as promising energy storage systems due to their high energy density, inherent safety, low cost, and simplified fabrication process. However, rapid capacity fading caused by the side reactions between the in situ formed zinc metal anode and electrolyte hinders their practical applications. To address these issues, aqueous AFZBs enabled by electrolyte engineering to form a stable interphase are designed. By introducing a multifunctional zinc fluoride (ZnF2) additive into the electrolyte, a stable F-rich interfacial layer is formed. This interfacial layer can not only regulate the growth orientation of zinc crystals, but also serve as an inert protection layer against side reactions such as H2 generation. Based on these synergy effects, zinc deposition/dissolution with high reversibility (Coulombic efficiency > 99.87%) and stable cycling performance up to 600 h of are achieved in the electrolyte optimized by ZnF2. With this electrolyte, the cycling life of AFZBs is significantly improved. The work may initiate the research of AFZBs and be useful for the design of high energy, high safety, and low-cost power sources.  相似文献   
8.
In the petroleum industry, high temperature and high pressure (HTHP) would dramatically worsen rheological properties and increase fluid loss volumes of drilling fluids. Synthetic polymer as an indispensable additive has attracted more and more attention recently. In this article, a new copolymer (named AADS) of 2-acrylamide-2-methylpropanesulfonic acid, acrylamide, dimethyl diallyl ammonium chloride, and sodium styrene sulfonate was synthesized through aqueous solution polymerization. The chemical structure of the copolymer was characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance. Moreover, its thermal stability was simultaneously analyzed using a differential scanning calorimetry. The results showed that the synthetic polymer contained all the designed functional groups, and its structure was consistent to the desired one. Under contamination of sodium chloride, AADS solution maintained relatively high viscosity in high concentration brine, showing a good antisalt capacity. Furthermore, the effect of AADS content and temperature on rheological behavior and fluid loss volume of the water-based drilling fluid (WBDF) containing the synthesized product were investigated according to the American Petroleum Institute standard. Results showed that the rheological and filtration properties of the prepared WBDF were improved with the increase in the AADS concentration before and after the thermal aging test. In addition, in the temperature range of 80–240 °C, a reversible rheological behavior was observed during the heating–cooling process, and the HTHP fluid loss was controlled within 22.5 mL, suggesting that the copolymer AADS was suitable for making WBDF s with high temperature resistance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47813.  相似文献   
9.
目前图书馆、档案馆多选用低温冷冻技术杀灭害虫。为研究该技术对纸张的影响,选择6种纸样(道林纸、字典纸、双胶纸、打字纸、新闻纸和试卷纸)进行180个周期的低温冷冻处理,测定其与室温下避光保存纸样的机械性能和水抽提液pH值等性能指标的相对变化。结果显示,各项性能指标相对变化率基本都不超过5%,只有打字纸冷冻后抗张指数相对变化率达到8. 6%。因此多次低温冷冻基本不会对纸张性能造成影响,还有利于缓解漂白程度较高的纸张保存过程中白度和抗张强度的下降程度,适宜用于图书档案的杀虫操作。  相似文献   
10.
Compared with inorganic or perovskite solar cells, the relatively large non-radiative recombination voltage losses (ΔVnon-rad) in organic solar cells (OSCs) limit the improvement of the open-circuit voltage (Voc). Herein, OSCs are fabricated by adopting two pairs of D–π–A polymers (PBT1-C/PBT1-C-2Cl and PBDB-T/PBDB-T-2Cl) as electron donors and a wide-bandgap molecule BTA3 as the electron acceptor. In these blends, a charge-transfer state energy (ECT) as high as 1.70–1.76 eV is achieved, leading to small energetic differences between the singlet excited states and charge-transfer states (ΔECT ≈ 0.1 eV). In addition, after introducing chlorine atoms into the π-bridge or the side chain of benzodithiophene (BDT) unit, electroluminescence external quantum efficiencies as high as 1.9 × 10−3 and 1.0 × 10−3 are realized in OSCs based on PBTI-C-2Cl and PBDB-T-2Cl, respectively. Their corresponding ΔVnon-rad are 0.16 and 0.17 V, which are lower than those of OSCs based on the analog polymers without a chlorine atom (0.21 and 0.24 V for PBT1-C and PBDB-T, respectively), resulting in high Voc of 1.3 V. The ΔVnon-rad of 0.16 V and Voc of 1.3 V achieved in PBT1-C-2Cl:BTA3 OSCs are thought to represent the best values for solution-processed OSCs reported in the literature so far.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号