首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1279篇
  免费   566篇
  国内免费   18篇
综合类   25篇
化学工业   1225篇
金属工艺   62篇
机械仪表   23篇
建筑科学   2篇
矿业工程   2篇
能源动力   1篇
轻工业   17篇
水利工程   1篇
无线电   124篇
一般工业技术   370篇
冶金工业   5篇
原子能技术   4篇
自动化技术   2篇
  2024年   9篇
  2023年   35篇
  2022年   11篇
  2021年   184篇
  2020年   126篇
  2019年   89篇
  2018年   113篇
  2017年   86篇
  2016年   116篇
  2015年   168篇
  2014年   170篇
  2013年   148篇
  2012年   64篇
  2011年   74篇
  2010年   74篇
  2009年   68篇
  2008年   68篇
  2007年   49篇
  2006年   30篇
  2005年   33篇
  2004年   37篇
  2003年   40篇
  2002年   20篇
  2001年   15篇
  2000年   10篇
  1999年   7篇
  1998年   8篇
  1997年   2篇
  1995年   3篇
  1994年   3篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有1863条查询结果,搜索用时 31 毫秒
1.
Fine-tuning of the scaffolds structural features for bone tissue engineering can be an efficient approach to regulate the specific response of the osteoblasts. Here, we loaded magnetic nanoparticles aka superparamagnetic iron oxide nanoparticles (SPIONs) into 3D composite scaffolds based on biological macromolecules (chitosan, collagen, hyaluronic acid) and calcium phosphates for potential applications in bone regeneration, using a biomimetic approach. We assessed the effects of organic (chitosan/collagen/hyaluronic acid) and inorganic (calcium phosphates, SPIONs) phase over the final features of the magnetic scaffolds (MS). Mechanical properties, magnetic susceptibility and biological fluids retention are strongly dependent on the final composition of MS and within the recommended range for application in bone regeneration. The MS architecture/pore size can be made bespoken through changes of the final organic/inorganic ratio. The scaffolds undertake mild degradation as the presence of inorganic components hinders the enzyme catalytic activity. In vitro studies indicated that osteoblasts (SaOS-2) on MS9 had similar cell behaviour activity in comparison with the TCP control. In vivo data showed an evident development of integration and resorption of the MS composites with low inflammation activity. Current findings suggest that the combination of SPIONs into 3D composite scaffolds can be a promising toolkit for bone regeneration.  相似文献   
2.
Biomaterials with dynamically tunable properties are critical for a range of applications in regenerative medicine and basic biology. In this work, we show the reversible control of gelatin methacrylate (GelMA) hydrogel stiffness through the use of DNA crosslinkers. We replaced some of the inter-GelMA crosslinks with double-stranded DNA, allowing for their removal through toehold-mediated strand displacement. The crosslinks could be restored by adding fresh dsDNA with complementary handles to those on the hydrogel. The elastic modulus (G’) of the hydrogels could be tuned between 500 and 1000 Pa, reversibly, over two cycles without degradation of performance. By functionalizing the gels with a second DNA strand, it was possible to control the crosslink density and a model ligand in an orthogonal fashion with two different displacement strands. Our results demonstrate the potential for DNA to reversibly control both stiffness and ligand presentation in a protein-based hydrogel, and will be useful for teasing apart the spatiotemporal behavior of encapsulated cells.  相似文献   
3.
The conversion of food industry by-products to compounds with high added value is nowadays a significant topic, for social, environmental, and economic reasons. In this paper, calcium phosphate-based materials were obtained from black scabbardfish (Aphanopus carbo) bones and grey triggerfish (Balistes capriscus) skin, which are two of the most abundant fish by-products of Madeira Island. Different calcination temperatures between 400 and 1000°C were employed. Materials obtained from calcination of bones of black scabbard fish were composed by homogeneous mixtures of hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and β-tricalcium phosphate (β-Ca3(PO4)2, β-TCP). Because of the high biocompatibility of HAp and the good resorbability of β-TCP, these natural biphasic materials could be very relevant in the field of biomaterials, as bone grafts. The ratio between HAp and β-TCP in the biphasic compound was dependent on the calcination temperature. Differently, the material obtained from skin of grey triggerfish contained HAp as the main phase, together with small amounts of other mineral phases, such as halite and rhenanite, which are known to enhance osteogenesis when used as bone substitutes. In both cases, the increase of calcination temperature led to an increase in the particles size with a consequent decrease in their specific surface area. These results demonstrate that from the fish by-products of the most consumed fishes in Madeira Island it is possible to obtain bioceramic materials with tunable composition and particle morphology, which could be promising materials for the biomedical field.  相似文献   
4.
5.
In this study, we aimed to develop an efficient synthesis and photopolymerization of acrylated methyl ricinoleate (AMR) for biomedical applications. During the first step of the synthesis, methyl ricinoleate (MR) and boric acid were esterified via azeotropic distillation in toluene. Afterward, MR–boric acid ester was acrylated with acrylic acid at 165 °C via a boric acid ester acidolysis reaction. The bulk photopolymerization of AMR was performed in the presence of the photoinitiator 2,2-dimethoxy-2-phenyl acetophenone (DMPA) under 365 nm UV irradiation. Even with the use of 0.4% DMPA, a 35% monomer conversion was achieved within 30 min. Moreover, AMR, the plant-oil-based monomer, was also copolymerized with N-isopropyl acrylamide to obtain thermoresponsive hydrogels on the glass surface for biomedical applications. The synthesized materials were characterized by Fourier transform infrared (FTIR) spectroscopy, 1H-NMR spectroscopy, and thermal characterization via thermogravimetric analysis (TGA) and differential scanning calorimetry techniques. The surfaces were characterized by FTIR and Energy Dispersive X-ray (EDS) spectroscopy. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47969.  相似文献   
6.
Polyhydroxyalkanoates (PHAs) are microbial biopolymers (polyesters) that have a wide range of functions and applications. They serve in nature mainly as carbon and energy storage materials for a variety of microorganisms. In past decades, their utilization has attracted much attention, from commodities and degradable plastics to specialty performance materials in medicine. PHA biosynthesis has been well understood, and it is now possible to design bacterial strands to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are very manifold: some are derived from food‐based carbon sources (e.g., fats and oils (triglycerids)), thus raising concerns with regard to the sustainability of their productions in terms of crop area and food. In addition, hemicellulose hydrolysates, crude glycerol, and methanol are very promising carbon sources for the sustainable production of PHAs. The integration of PHA production within a modern biorefinery is an important issue and can result in a simultaneous production of biofuels and bioplastics. Furthermore, many chemical‐synthetic procedures by means of efficient catalysts can give access to a variety of PHAs. This article summarizes recent developments in these fields and emphasizes the importance of a sustainable PHA‐based industry. Practical Applications: Practical applications of the microbial polyesters PHAs are, for example, a variety of sustainably produced commodities as well as special applications in (bio)medicine, for example, tissue engineering.  相似文献   
7.
Controlling the electromechanical response of piezoelectric biological structures including tissues, peptides, and amino acids provides new applications for biocompatible, sustainable materials in electronics and medicine. Here, the piezoelectric effect is revealed in another class of biological materials, with robust longitudinal and shear piezoelectricity measured in single crystals of the transmembrane protein ba3 cytochrome c oxidase from Thermus thermophilus. The experimental findings from piezoresponse force microscopy are substantiated using a range of control measurements and molecular models. The observed longitudinal and shear piezoelectric responses of ≈ 2 and 8 pm V−1, respectively, are comparable to or exceed the performance of commonly used inorganic piezoelectric materials including quartz, aluminum nitride, and zinc oxide. This suggests that transmembrane proteins may provide, in addition to physiological energy transduction, technologically useful piezoelectric material derived entirely from nature. Membrane proteins could extend the range of rationally designed biopiezoelectric materials far beyond the minimalistic peptide motifs currently used in miniaturized energy harvesters, and the finding of robust piezoelectric response in a transmembrane protein also raises fundamental questions regarding the molecular evolution, activation, and role of regulatory proteins in the cellular nanomachinery, indicating that piezoelectricity might be important for fundamental physiological processes.  相似文献   
8.
This research continued the development of a difunctional Oxirane and multifunctional Acrylate interpenetrating polymer network composite System (OASys) with antimicrobial properties. The effects of 4-Isopropyl-4′-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate (Borate), hexamethylene diamine (HMDA) and N,N-dimethyl p-toluidine (DMPT) on OASys (Epalloy 5001:dipentaerythritol hexaacrylate) composite hardness, contact angle, monomer-to-polymer degree of conversion (DoC), mechanical properties, polymerization shrinkage, shrinkage stress, and antimicrobial properties were determined. Bis-GMA:TEGDMA composites were used as the control. OASys composites with 9 wt% Borate and 0.5 wt% DMPT or 1.5 wt% HMDA had comparable hardness, DoC's and polymerization shrinkages to controls, but had lower contact angles and mechanical properties. Additionally, OASys composites with 1.5 wt% HMDA had significantly less polymerization stress than controls and demonstrated significant antibacterial activity against Streptococcus mutans and Lactobacillus casei out to 3 months. With lower shrinkage stress and long-term antimicrobial activity, OASys composites look promising for increasing the clinical lifetime of dental composites, but improvements in mechanical properties are needed.  相似文献   
9.
Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials.  相似文献   
10.
The complex tissue-specific physiology that is orchestrated from the nano- to the macroscale, in conjugation with the dynamic biophysical/biochemical stimuli underlying biological processes, has inspired the design of sophisticated hydrogels and nanoparticle systems exhibiting stimuli-responsive features. Recently, hydrogels and nanoparticles have been combined in advanced nanocomposite hybrid platforms expanding their range of biomedical applications. The ease and flexibility of attaining modular nanocomposite hydrogel constructs by selecting different classes of nanomaterials/hydrogels, or tuning nanoparticle-hydrogel physicochemical interactions widely expands the range of attainable properties to levels beyond those of traditional platforms. This review showcases the intrinsic ability of hybrid constructs to react to external or internal/physiological stimuli in the scope of developing sophisticated and intelligent systems with application-oriented features. Moreover, nanoparticle-hydrogel platforms are overviewed in the context of encoding stimuli-responsive cascades that recapitulate signaling interplays present in native biosystems. Collectively, recent breakthroughs in the design of stimuli-responsive nanocomposite hydrogels improve their potential for operating as advanced systems in different biomedical applications that benefit from tailored single or multi-responsiveness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号