首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   574篇
  免费   127篇
  国内免费   3篇
电工技术   1篇
综合类   5篇
化学工业   170篇
金属工艺   1篇
机械仪表   4篇
建筑科学   1篇
矿业工程   1篇
轻工业   45篇
武器工业   1篇
无线电   156篇
一般工业技术   283篇
冶金工业   3篇
原子能技术   1篇
自动化技术   32篇
  2023年   37篇
  2022年   14篇
  2021年   25篇
  2020年   44篇
  2019年   46篇
  2018年   33篇
  2017年   26篇
  2016年   38篇
  2015年   29篇
  2014年   38篇
  2013年   40篇
  2012年   48篇
  2011年   48篇
  2010年   38篇
  2009年   49篇
  2008年   47篇
  2007年   25篇
  2006年   21篇
  2005年   12篇
  2004年   17篇
  2003年   9篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1986年   1篇
排序方式: 共有704条查询结果,搜索用时 15 毫秒
1.
The fabrication of chiral nanostructures gives rise to characteristic chiroptical activity, which can be used for chirality‐based biosensors. Great progress is made in the use of nanoassemblies for the construction of chiral nanoparticle dimers, pyramids, helices, and twisted structures, and their chiroptical activities correlate with diverse structural geometries and enantiomeric configurations. In DNA‐hybridization‐based chiral nanoassemblies, the assembly parameters, such as the components, gaps, multicomponents, and the aftergrowth of metal, can result in multiple bands and enhanced chiroptical effects. Based on known chiral nanostructures, the existing chiral nanoassembly‐based biosensors together with their targets and signal amplification strategies are reviewed. Chirality involves multiple signals, and multitarget biosensors are introduced with newly developed chiral architectures for the accurate and reliable monitoring of biomarkers in living cells. The interactions between chiral nanoarchitectures and biosystems are also highlighted, which are important not only in the chiral dynamic switching of nano‐objects for biomonitoring, but also in manipulating cell growth, proliferation, and adhesion. The future perspectives on chiral fabrication and its use in biosensors are also comprehensively discussed.  相似文献   
2.
Small-molecule biosensors have major applications in biotechnology and medicine but remain difficult to engineer. Plant hormone receptors represent an attractive platform for engineering such biosensors because their chemically induced dimerization architectures naturally decouple small-molecule sensing and sensor actuation. Rapid biosensor engineering will require quantitative high-throughput screening methods. Here we develop a yeast surface display (YSD) platform for the PYR1/HAB1 abscisic acid sensor of Arabidopsis thaliana. We extensively optimized PYR1 surface display, HAB1 purification, and binding reaction conditions. Our system reproduces previous results with wild-type and engineered receptors, and a mathematical analysis of the PYR1/HAB1 system allows us to infer all binding constants. Critically, we find that a previously engineered PYR1 receptor with altered ligand specificity binds HAB1 with identical affinity, suggesting that substantial reengineering of the PYR1 binding pocket does not compromise sensor actuation. This YSD platform for A. thaliana PYR1/HAB1 will facilitate future biosensor engineering efforts.  相似文献   
3.
It has been proposed that Mg2+ and Fe2+ are very similar in interacting with ribozymes and some protein-based enzymes, but their activities with DNAzymes have yet to be studied. Here, the activity of Fe2+ as cofactor for a few RNA-cleaving DNAzymes is investigated. 17E is a well-studied DNAzyme that is active in the presence of many different divalent metal ions; it is highly active with Fe2+ with an apparent Kd of 29.7±2.3 μm and a kobs of 1.12±0.11 min−1 in the presence of 1 mm Fe2+ at pH 7.5. Fe2+ has 21-fold higher activity than Mg2+. Six different DNAzymes are then tested, and only the DNAzymes active with Mg2+ (17E, 8–17, and E5) are active with Fe2+. Fe2+ has 25 and one- to twofold higher activity than Mg2+ for the 8–17 and E5 DNAzymes, respectively. In pH>7 buffer and in presence of air, 1 mm Fe2+ results in a nonspecific degradation of the DNA strand due to reactive oxygen species (ROS). Cleavage reactions in anoxic environment and antioxidant ascorbate can be used to overcome the effect of oxidation. The findings provide insights for potential DNAzyme catalysis in the early Earth, and they further support the similarity between Mg2+ and Fe2+ in enzyme catalysis.  相似文献   
4.
5.
6.
Squaraine dyes (SQs) are an important class of polymethine dyes with a unique reasonable-stabilized zwitterionic structure, in which electrons are highly delocalized over the conjugated bridge. These dyes can not only be easily synthesized via a condensation, but also exhibit intense absorption and emission in the visible and near-infrared region with excellent photochemical stability, making them attractive material candidates for many photoelectric and biomedical applications. Thus, in this review, after an introduction of SQs, the recent advances of SQs in the photovoltaic field are comprehensively summarized including dye-sensitized solar cells, organic solar cells, and perovskite solar cells. Then, the important advances in the use of SQs as the biosensors, biological imaging, and photodynamic/photothermal therapy reagents in the biomedical field are also discussed. Finally, a summary and outlook will be provided with some new perspectives for the future design of SQs.  相似文献   
7.
DNA's remarkable molecular recognition properties, flexibility, and structural features make it one of the most promising scaffolds to design a variety of nanostructures. During recent decades, two major methods have been developed for the construction of DNA nanomaterials in a programmable way; both generate nanostructures in one, two, and three dimensions. The tile‐based assembly process is a useful tool to construct large and simple structures; the DNA origami method is suitable for the production of smaller, more sophisticated and well‐defined structures. Proteins, nanoparticles and other functional elements have been specifically positioned into designed patterns on these structures. They can also act as templates to study chemical reactions, help in the structural determination of proteins, and be used as platform for genomic and drug delivery applications. In this review we examine recent progresses towards the potential use of DNA nanostructures in molecular and cellular biology.  相似文献   
8.
9.
In this work, both experimental data and a model are presented on the coupling between living cells and graphene solution‐gated field‐effect transistors. Modified HEK 293 cells are successfully cultured on graphene transistor arrays and electrically accessed by the patch clamp method. Transistor recordings are presented, showing the opening and closing of voltage‐gated potassium ion channels in the cell membrane. The experimental data is compared with the broadly used standard point‐contact model. The ion dynamics in the cell–transistor cleft are analyzed to account for the differences between the model and the experimental data revealing a significant increase in the total ionic strength in the cleft. In order to describe the influence of the ion concentration resulting from the cell activity, the ion‐sensitivity of graphene solution‐gated field‐effect transistors is investigated experimentally and modelled by considering the screening effect of the ions on the surface potential at the graphene/electrolyte interface. Finally, the model of the cell–transistor coupling is extended to include the effect of ion accumulation and ion sensitivity. The experimental data shows a very good agreement with this extended model, emphasizing the importance of considering the ion concentration in the cleft to properly understand the cell‐transistor coupling.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号