首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144475篇
  免费   15864篇
  国内免费   8734篇
电工技术   9474篇
技术理论   4篇
综合类   10413篇
化学工业   26525篇
金属工艺   24630篇
机械仪表   7030篇
建筑科学   10360篇
矿业工程   3418篇
能源动力   5812篇
轻工业   7869篇
水利工程   2356篇
石油天然气   7697篇
武器工业   1258篇
无线电   12479篇
一般工业技术   19453篇
冶金工业   10248篇
原子能技术   2048篇
自动化技术   7999篇
  2024年   311篇
  2023年   2654篇
  2022年   4249篇
  2021年   5101篇
  2020年   5192篇
  2019年   4441篇
  2018年   4254篇
  2017年   5308篇
  2016年   5714篇
  2015年   5966篇
  2014年   8479篇
  2013年   8854篇
  2012年   10450篇
  2011年   11323篇
  2010年   8279篇
  2009年   8331篇
  2008年   7260篇
  2007年   9347篇
  2006年   8620篇
  2005年   7090篇
  2004年   6115篇
  2003年   5416篇
  2002年   4501篇
  2001年   4013篇
  2000年   3207篇
  1999年   2553篇
  1998年   1945篇
  1997年   1710篇
  1996年   1533篇
  1995年   1247篇
  1994年   1076篇
  1993年   783篇
  1992年   828篇
  1991年   650篇
  1990年   609篇
  1989年   437篇
  1988年   227篇
  1987年   172篇
  1986年   178篇
  1985年   141篇
  1984年   125篇
  1983年   74篇
  1982年   80篇
  1981年   40篇
  1980年   57篇
  1979年   35篇
  1977年   13篇
  1975年   9篇
  1959年   21篇
  1951年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
苏志刚  刘卓伟 《激光与红外》2022,52(8):1153-1159
在单光子计数激光雷达检测领域,目前的检测方法在低信噪比情况下虚警概率会增加,同时也无法适应噪声变化的问题。针对这些问题,提出了一种基于Bayesian的检测方法,该方法首先通过雷达方程估计回波信号光子数的范围,将其作为先验信息,而后结合二项分布建立了累计概率模型,基于Bayesian判决准则计算得到检测阈值,此阈值能够在检测概率与虚警概率中间择其平衡。这种方法不仅克服了低信噪比检测困难的情况,还减少了先验信息的获取难度。实验结果表明,对比固定阈值其虚警概率降低了10倍。对比“恒虚警”其检测概率提高了约20。验证了方法具有良好的检测效果,具备一定的可操作性。  相似文献   
2.
周忠彬  高金霞  袁宝慧 《爆破器材》2022,51(5):20-23,30
针对压制成型的PBX炸药装药,选择CT无损检测、巴西实验和扫描电镜检测等技术,对比研究了室温和加热两种温度下压制成型的炸药装药内部质量、静态力学性能和细观破坏形式。结果表明,加热压制有利于改善炸药装药的内部质量,可避免产生初始损伤,且提高了装药的力学性能。细观尺度上,室温压制成型的装药主要发生界面脱黏破坏,加热压制成型装药的主要破坏形式是穿晶断裂。  相似文献   
3.
《工程爆破》2022,(2):76-78
在较为复杂的环境下,爆破拆除钢筋混凝土氧化铝储槽。该储槽自重大、呈圆形,内有4根立柱支撑下料漏斗。为使储槽顺利定向倒塌,通过爆破方案选择、参数确定,采取梯形切口和预处理以及安全防护和减振措施,使储槽爆破拆除获圆满成功。  相似文献   
4.
Lithium alanate (LiAlH4) is a material that can be potentially used for solid-state hydrogen storage due to its high hydrogen content (10.5 wt%). Nevertheless, a high desorption temperature, slow desorption kinetic, and irreversibility have restricted the application of LiAlH4 as a solid-state hydrogen storage material. Hence, to lower the decomposition temperature and to boost the dehydrogenation kinetic, in this study, we applied K2NiF6 as an additive to LiAlH4. The addition of K2NiF6 showed an excellent improvement of the LiAlH4 dehydrogenation properties. After adding 10 wt% K2NiF6, the initial decomposition temperature of LiAlH4 within the first two dehydrogenation steps was lowered to 90 °C and 156 °C, respectively, that is 50 °C and 27 °C lower than that of the аs-milled LiAlH4. In terms of dehydrogenation kinetics, the dehydrogenation rate of K2NiF6-doped LiAlH4 sample was significantly higher as compared to аs-milled LiAlH4. The K2NiF6-doped LiAlH4 sample can release 3.07 wt% hydrogen within 90 min, while the milled LiAlH4 merely release 0.19 wt% hydrogen during the same period. According to the Arrhenius plot, the apparent activation energies for the desorption process of K2NiF6-doped LiAlH4 are 75.0 kJ/mol for the first stage and 88.0 kJ/mol for the second stage. These activation energies are lower compared to the undoped LiAlH4. The morphology study showed that the LiAlH4 particles become smaller and less agglomerated when K2NiF6 is added. The in situ formation of new phases of AlNi and LiF during the dehydrogenation process, as well as a reduction in particle size, is believed to be essential contributors in improving the LiAlH4 dehydrogenation characteristics.  相似文献   
5.
林加富 《玻璃》2022,49(2):53-57
双玻光伏组件以其抗PID性强、防隐裂、防水汽透过、抗蜗牛纹、可靠性优异、轻量化等诸多优点,在晶硅太阳能组件市占比逐步提高。双玻光伏组件用背板玻璃一般需要预留出线孔,光伏背板玻璃的出线孔主要有两种打孔方式:金钢钻上下同步钻孔的模式和激光打孔。激光打孔以其易维护、可异形孔加工、效率高、生产成本低等优势得到各大玻璃厂的认可。通过分析在实际生产中激光打孔出现的打孔缺陷问题,提出了改善措施,有助于工厂的降本增效。  相似文献   
6.
Polyelectrolyte complex (PEC) membranes prepared from poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) were modified by crossflow polymerization of aniline (ANI). The PEC membranes were used as separators in a two-compartment setup where ANI monomer and ammonium persulfate (APS) oxidant diffused through the membranes to form polyaniline (PANI). APS and ANI having different distributions throughout the membranes, the reaction led to the asymmetric polymerization of PANI on one face of each PEC membrane thus producing Janus membranes. Due to the excess PANI content, the membrane displayed distinct asymmetric electrical conductivities on each face. Interestingly, very different ANI polymerizations were obtained when nonstoichiometric PEC membranes having different molar ratio of cationic and anionic polyelectrolytes (P+:P? represents PDADMAC:PSS) were used and transport of APS was fastest through the 2:1 PEC when compared to the 1:2 PEC. In all experiments, the polymerization was most intense on the ANI side of the membranes. Also, the influence of NaCl both during PEC fabrication and during polymerization was studied and found to have some effect on the solute permeability. Results showed that a higher content of PANI was formed on PEC membranes having excess P+ and with no NaCl added during PEC fabrication. Although X-ray diffraction confirmed the presence of PANI on both sides of each membrane, scanning electron microscopy images demonstrated that both sides of each membrane had different PANI content deposited. Electrical conductivity measurements using a four-point probe setup also showed that the PEC–PANI exhibits asymmetric electrical property on different sides. © 2021 Society of Industrial Chemistry.  相似文献   
7.
In this study, the effect of high-intensity ultrasound (HIUS) (200 and 400 W for 0, 5, 10 and 15 min respectively) on conformational changes, physicochemical, rheological and emulsifying properties of scallop (Patinopecten yessoensis) myofibrillar protein (SMP) was investigated. HIUS-treated SMP had lower α-helix content and higher β-sheet content compared with the native SMP. HIUS treatment induced the unfolding of SMP and increased the surface hydrophobicity. The particle size of SMP decreased and the absolute zeta-potential increased after ultrasonication, which in turn increased the solubility of SMP. The conformational changes and the improvement of physicochemical properties of SMP increased the ability for SMP to lower the interfacial tension at the oil–water interface and increased the percentage of adsorbed protein. As a result, the emulsifying properties, rheological properties of SMP and storage stability of emulsions were also improved. In conclusion, HIUS treatment has future potential for improving the emulsifying properties of SMP.  相似文献   
8.
The effects of cellulose microfibres (CMFs, Average size: 100 ± 5 μm) and cellulose nanofibres (CNFs, Average size: 60 ± 3 nm) on the properties of myofibrillar protein (MP) gels from duck breast meat were studied. The results demonstrated that CMFs and CNFs were mostly connected to MP by non-covalent bonds, the diffusion and cross-linking of MP molecules was promoted, and a denser and more complete gel network was formed. With the increases of CMFs and CNFs concentration (0–10%), the hardness was increased by 13.15% and 19.78% for CMFs10% and CNFs10% gels, respectively, and the elasticity was increased by 40% and 80%, respectively. At the same concentration (0–10%), the increase in gel hardness, viscoelasticity and immobilised water content was greater in the CNFs-MP group than in the CMFs-MP group. The CNFs-MP group had a tighter gel network, and CNFs had a better potential to improve the gelation performance of MP.  相似文献   
9.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   
10.
《Ceramics International》2022,48(3):3669-3675
ZnAl2O4 nanocrystalline particles were prepared using the solution combustion method using a new combustion fuel, Leucine. The prepared samples' structural, microstructural–elemental composition, and optical characteristics were investigated using XRD, SEM-EDS, and UV–Visible spectroscopy. As-synthesized ZnAl2O4 nanoparticles are polycrystalline, with no secondary phases, and crystallized in a cubic - spinel structure. The polycrystalline nature of the prepared sample is due to the exothermicity of fuel and oxidizer, which demonstrate that the fuel utilized (Leucine) provided adequate energy for the production of nanoparticles in their as-synthesized form, as supported by adiabatic temperature through thermodynamic calculations. The thermodynamic calculations also include a universal method to estimate the specific heat capacity at constant pressure. Furthermore, even after 2 h of calcination at 600 °C, ZnAl2O4 exhibits a single phase with no secondary phases, indicating the material stability and single-phase nature. The crystallinity of ZnAl2O4 nanoparticles was observed to increase with increasing annealing temperature. SEM micrographs of as-synthesized samples exhibit the formation of dense particles, voids, and pores in the as-synthesized sample. In addition, tiny aggregates were detected on the surface of more prominent clusters, which reduced as the calcination progressed. In addition, calcined samples exhibit a greater optical reflectance than as-synthesized samples. Tauc's graphs were used to compute the optical energy bandgap. The calculated energy band gap is redshifted to that of the bulk material. The bandgap energy decreases upon calcination, suggesting that the prepared materials have a larger crystallite size or more crystallinity. Correlations were found between the Tad, and the structural and optical properties of the prepared samples. The findings suggest that Leucine could be used as a novel combustion fuel to produce crystalline ZnAl2O4 nanoparticles in their as-synthesis form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号