首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44484篇
  免费   4957篇
  国内免费   2865篇
电工技术   1028篇
综合类   2367篇
化学工业   12081篇
金属工艺   4369篇
机械仪表   1727篇
建筑科学   2450篇
矿业工程   827篇
能源动力   1541篇
轻工业   1564篇
水利工程   268篇
石油天然气   314篇
武器工业   612篇
无线电   4787篇
一般工业技术   15006篇
冶金工业   2234篇
原子能技术   397篇
自动化技术   734篇
  2024年   69篇
  2023年   1112篇
  2022年   1153篇
  2021年   1646篇
  2020年   1903篇
  2019年   1661篇
  2018年   1518篇
  2017年   1659篇
  2016年   1546篇
  2015年   1547篇
  2014年   2292篇
  2013年   2467篇
  2012年   2773篇
  2011年   3594篇
  2010年   2577篇
  2009年   2798篇
  2008年   2477篇
  2007年   3052篇
  2006年   2704篇
  2005年   2480篇
  2004年   2030篇
  2003年   1802篇
  2002年   1370篇
  2001年   1096篇
  2000年   912篇
  1999年   723篇
  1998年   677篇
  1997年   477篇
  1996年   430篇
  1995年   341篇
  1994年   334篇
  1993年   224篇
  1992年   182篇
  1991年   160篇
  1990年   134篇
  1989年   113篇
  1988年   51篇
  1987年   36篇
  1986年   35篇
  1985年   21篇
  1984年   37篇
  1983年   19篇
  1982年   28篇
  1981年   7篇
  1980年   10篇
  1979年   3篇
  1976年   3篇
  1959年   2篇
  1955年   4篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
《工程爆破》2022,(4):78-84
介绍了在包头市某工程实施管道穿越黄河施工中,采用爆破法处理卡钻的经验。针对深水环境条件及钻杆内径小不宜采用集团装药的条件,确定采用"小直径爆破筒,钻杆内部装药"的爆破方案,阐述了爆破设计及施工注意事项。可供类似工程参考。  相似文献   
2.
分析了静电产生的原因,阐述了粉体含能材料生产中的静电起电现象、静电的危害、静电安全性评估标准以及建立在此标准基础上的静电放电危险的评价办法,提出了粉体含能材料在生产、运输中所需要采取的静电防护措施。  相似文献   
3.
《Ceramics International》2022,48(5):6266-6276
Porous diatomite ceramics with hierarchical pores and high apparent porosity (50.29–56%) were successfully fabricated via direct stereolithography. The pre-ball-milling time, dispersant type and dispersant concentration were systematically investigated to prepare diatomite pastes with high solid loading, low viscosity and a self-supporting effect. The results showed that a pre-ball-milling time of 24 h was more suitable to prepare diatomite pastes with high solid loading, and Span80 at 2 wt% was the optimal dispersant to obtain 40 vol% diatomite paste with a low viscosity and a self-supporting effect. To restrain the formation of defects, a heating rate as low as 0.2 °C/min was allowed to control the pyrolysis rate in the multistage debinding process. At sintering temperatures ranging from 900 °C to 1000 °C, porous diatomite ceramics exhibited a typical bimodal porosity, high apparent porosity and great flexural strength.  相似文献   
4.
Low-thermal conductivity ceramics play an indispensable role in maximizing the efficiency and durability of hot end components. Pyrochlore, particularly zirconate pyrochlore, is currently a highly promising and widely studied candidate for its extremely low thermal conductivity. However, there are still few pyrochlores that offer both stiffness, insulation, and good thermal expansion properties. In this work, the solidification method was innovatively introduced into the preparation of titanate pyrochlore, and combined it with the compositional design of high-entropy. Through careful composition design and solidification control, the high-density and uniform elements distributed high-entropy titanate pyrochlore ceramics were successfully prepared. These samples possess high hardness (15.88 GPa) and Young’s modulus (295.5 GPa), low thermal conductivity (0.947 W·m?1·K?1), excellent thermal expansion coefficient (11.6 ×10?6/K) and an exquisite balance between stiffness and insulation (E/κ, 312.1 GPa·W?1·m·K), in which the E/κ exhibits the highest value among the current reported works.  相似文献   
5.
《Ceramics International》2022,48(4):5091-5099
The impact of the addition of TiO2 nanoparticles and nanowires on the morphology, phase characteristics, contact angle, and electrochemical performance of chemically bonded phosphate ceramic coatings (CBPCs) was investigated. The chemical composition and surface morphology of the TiO2 nanoparticle and nanowire modified with and without (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane were characterized. Results indicated that the hydrophobic –CF2– and –CF3 groups were successfully introduced into the TiO2 nanoparticles and nanowires after modification. Corrosion resistance of CBPCs with TiO2 was evidently improved compared with that without TiO2. Such improvement was mainly due to the combined effects of low surface energy materials and micro/nano structures. In addition, CBPCs with TiO2 nanowires exhibited higher hydrophobicity and corrosion resistance than those with TiO2 nanoparticles because of the special columnar structure of the nanowires.  相似文献   
6.
《Ceramics International》2022,48(18):26351-26360
Foams glass were obtained from solid waste of flat glass and exhausted alkaline batteries. The physical, chemical, crystalline and morphological properties of the samples were obtained using the Archimedes principle, X-ray diffractometry (XRD), scanning electron microscopy (SEM). The results revealed glass foams with apparent porosities in the range of 55–64% and apparent densities in the range of 0.40–0.79 g cm?3. The manganese oxide and graphite contained within the cathode of alkaline batteries acted as both oxidizing agents and as foaming agents. The zinc contained in the anode acted as a pore stabilizing agent and the zinc oxide as a semiconductor material. The foam glass that was composed of flat glass with an anode of Zn and ZnO, and a cathode of Mn2O3 and Mn3O4 (named An8), showed the greatest potential for heterogeneous photocatalysis, with a maximum efficiency of 95.9% after 3 h of treatment of solution containing dye. These results suggest the feasibility of producing foam glass from waste, as well as its potential application in photocatalytic systems, such as in the low-cost treatment of water.  相似文献   
7.
《Ceramics International》2022,48(8):10506-10515
The search for materials and methods capable of reducing human impacts on the environment is of utmost importance nowadays. This study's primary purpose was to analyze the technical feasibility of ceramic composites production utilizing Fundão Dam's Iron Ore Tailings (IOT), Blast Furnace Slag (BFS) from charcoal, and Foundry Sand (FS) as partial substitutes for the traditional raw materials – sand and clay – for application in building industry materials. The composites were molded in rectangular specimens and fired at temperatures of 900, 950, 1000, 1050, and 1200 °C. The developed materials were analyzed and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TGA), and Differential Thermal Analysis (DTA). The obtained materials had flexural strength modulus of up to 12.19 MPa, water absorption ranging from 2 to 22%, linear shrinkage ranging from 0.02 to 6.50%, and apparent density ranging from 2.03 to 1.63 g/cm3. The study of the internal structure formation process revealed the formation of amorphous structures in the composites. The results demonstrated that these waste materials may be jointly used in construction materials, contributing to the reduction of natural resource extraction, besides enabling their correct disposal, minimizing environmental impacts, and improving the life quality of the surrounding communities.  相似文献   
8.
《Ceramics International》2022,48(17):24157-24191
Great progress in the development of low-cost ceramic membranes from alternative materials have been achieved recently towards various application especially water and wastewater treatment. However, their significance has not been fully recognized and understood especially in term of their microstructural analysis such as formation of grain growth and microcracks. This review paper summarizes fabrication method, alternative materials, microstructure, wettability, mechanical properties and application of low-cost ceramic membrane. The fabrication method including slip casting, tape casting, extrusion, pressing method and phase inversion technique are described. Alternative materials used in low-cost ceramic membrane fabrication are discussed and categorized into clays, agricultural waste, industrial waste and animal bone waste. The mechanisms of morphology formation, microstructure and wettability properties are analysed. Modification strategies for the surface of low-cost ceramic membrane are discussed, and classified into modification for separation application, modification for photocatalytic application and modification for membrane distillation and membrane contactor system. Modification improves the membrane structure by changing the pore size, porosity and wettability properties of low-cost ceramic membranes. Mechanical properties of low-cost ceramic membranes are also discussed in detail towards several mechanism, like grain growth phenomenon and formation of microcracks which also considered as membrane defects. Grain growth phenomenon can be divided into normal and abnormal grain growth. Meanwhile, formation of microcracks could be occurred in single-phase polycrystalline ceramics that have anisotropic grains or biphasic polycrystalline grains. The application of low-cost ceramic membrane in seawater desalination, oily wastewater treatment, heavy metal adsorption, textile separation and photocatalytic application are reviewed. Finally, some possible opportunities and challenges for further development of low-cost ceramic membrane are pointed out.  相似文献   
9.
In this work, Zn-Ni co-modified LiMg0.9Zn0.1-xNixPO4 (x = 0–0.1) microwave dielectric ceramics were fabricated using a solid state synthesis route. Rietveld refinement of the XRD data revealed that all ceramic samples have formed a single phase with olivine structure. SEM images showed that the samples have a dense microstructure, that agrees with the measured relative density of 97.73 %. Based on the complex chemical bond theory, Raman and infrared reflectance spectra, we postulate that εr is mainly affected by the ionic polarizability, lattice and bond energy, while P-O bond plays a decisive role in Q×f and τf value. Optimum properties of Q×f ~ 153,500 GHz, εr ~ 7.13 and τf ~ ?59 ppm/°C were achieved for the composition LiMg0.9Zn0.06Ni0.04PO4 sintered at 875 ℃ for 2 h. This set of properties makes these ceramics an excellent candidate for LTCC, wave-guide filters and antennas for 5 G/6 G communication applications.  相似文献   
10.
Hydrogen adsorption performance and mechanism upon cycling of the upscaled Ni-doped hierarchical carbon scaffold (HCS) are investigated. Upon 22 hydrogen ad/desorption cycles (T = 25–50 °C and p (H2) = 1–50 bar), the upscaled Ni-doped HCS shows excellent cycling stability with gravimetric capacity of up to 1.51 wt % H2. This is due to mechanical stability of HCS and good distribution of Ni nanoparticles. Hydrogen adsorption mechanism of Ni-doped HCS upon cycling is experimentally and theoretically characterized. Besides dissociative adsorption onto the surface, hydrogen diffusion into the lattice structure of Ni is observed. The latter enhances with the number of ad/desorption cycles and alters the electron sharing mechanisms between Ni and H during adsorption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号