首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30837篇
  免费   3244篇
  国内免费   1424篇
电工技术   1118篇
技术理论   2篇
综合类   1377篇
化学工业   10665篇
金属工艺   5981篇
机械仪表   1542篇
建筑科学   724篇
矿业工程   371篇
能源动力   686篇
轻工业   713篇
水利工程   114篇
石油天然气   388篇
武器工业   187篇
无线电   1903篇
一般工业技术   4145篇
冶金工业   1977篇
原子能技术   174篇
自动化技术   3438篇
  2024年   39篇
  2023年   480篇
  2022年   625篇
  2021年   901篇
  2020年   1064篇
  2019年   1041篇
  2018年   983篇
  2017年   1104篇
  2016年   1111篇
  2015年   1152篇
  2014年   1652篇
  2013年   1726篇
  2012年   1903篇
  2011年   2142篇
  2010年   1700篇
  2009年   1692篇
  2008年   1636篇
  2007年   1949篇
  2006年   1920篇
  2005年   1617篇
  2004年   1419篇
  2003年   1215篇
  2002年   1149篇
  2001年   1115篇
  2000年   832篇
  1999年   675篇
  1998年   562篇
  1997年   429篇
  1996年   317篇
  1995年   288篇
  1994年   199篇
  1993年   152篇
  1992年   154篇
  1991年   133篇
  1990年   148篇
  1989年   121篇
  1988年   45篇
  1987年   24篇
  1986年   24篇
  1985年   10篇
  1984年   11篇
  1983年   5篇
  1982年   10篇
  1981年   9篇
  1980年   4篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1975年   5篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
1.
《Ceramics International》2022,48(1):754-759
Thermal control coatings (TCCs) are an essential part of the thermal control systems in the spacecraft. Solar absorptance and emittance are the key performance parameters of TCCs. To develop an ultra-low solar absorption and stable inorganic TCCs for surface radiator, different TCCs were prepared by co-sintering ZnO and SiO2 nanoparticles to form Zn2SiO4/SiO2 pigment in this work, and the optical properties and radiation stability were systematically studied. It is found that the coating based on composite pigment has high reflectivity in the ultraviolet band and excellent optical performance possessing the low solar absorption of 0.06. In addition, the Zn2SiO4/SiO2 coating demonstrates the highest proton and electron radiation stability because that SiO2 between Zn2SiO4 particles acts as the relaxation center of the defects caused by radiation.  相似文献   
2.
《Ceramics International》2022,48(4):5091-5099
The impact of the addition of TiO2 nanoparticles and nanowires on the morphology, phase characteristics, contact angle, and electrochemical performance of chemically bonded phosphate ceramic coatings (CBPCs) was investigated. The chemical composition and surface morphology of the TiO2 nanoparticle and nanowire modified with and without (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane were characterized. Results indicated that the hydrophobic –CF2– and –CF3 groups were successfully introduced into the TiO2 nanoparticles and nanowires after modification. Corrosion resistance of CBPCs with TiO2 was evidently improved compared with that without TiO2. Such improvement was mainly due to the combined effects of low surface energy materials and micro/nano structures. In addition, CBPCs with TiO2 nanowires exhibited higher hydrophobicity and corrosion resistance than those with TiO2 nanoparticles because of the special columnar structure of the nanowires.  相似文献   
3.
Compositional analysis of boron carbide on nanometer length scales to examine or interpret atomic mechanisms, for example, solid-state amorphization or grain-boundary segregation, is challenging. This work reviews advancements in high-resolution microanalysis to characterize multiple generations of boron carbide. First, ζ-factor microanalysis will be introduced as a powerful (scanning) transmission electron microscopy ((S)TEM) analytical framework to accurately characterize boron carbide. Three case studies involving the application of ζ-factor microanalysis will then be presented: (1) accurate stoichiometry determination of B-doped boron carbide using ζ-factor microanalysis and electron energy loss spectroscopy, (2) normalized quantification of silicon grain-boundary segregation in Si-doped boron carbide, and (3) calibration of a scanning electron microscope X-ray energy-dispersive spectroscopy (XEDS) system to measure compositional homogeneity differences of B/Si-doped arc-melted boron carbides in the as-melted and annealed conditions. Overall, the improvement and application of advanced analytical tools have helped better understand processing–microstructure–property relationships and successfully manufacture high-performance ceramics.  相似文献   
4.
Heat transfer within ceramic feedstock powders is still unclear, which impedes optimization of the thermal and mechanical properties of the thermal sprayed coatings. The microspheres (yttria-stabilized zirconia YSZ and lanthanum zirconate LZO) were prepared via the electro-spraying assisted phase inversion method (ESP). The thermal properties of the two ESP microspheres and a commercial hollow spherical powder (HOSP) were investigated by using theoretical, experimental, and simulation methods. Thermal conductivity of the single microsphere was estimated via a novel nest model that was derived from the Maxwell-Eucken 1 and the EMT model. Thermal conductivity of a single YSZ/LZO-ESP microsphere prepared at 1100–1200 °C was within 0.36–0.75 W/m K, which was ~ 20 % lower than that of a single YSZ-HOSP microsphere with a similar porosity. Heat flux simulation showed that high tortuosity around the multi-scaled voids of the ESP microsphere led to a more efficient decrease in thermal conductivity compared with total porosity.  相似文献   
5.
Metal/carbon composite materials are highly promising electrocatalysts for water electrolysis. In this work, three composites of metal cobalt nanoparticles highly dispersed in N-doped carbon materials were facilely constructed by pyrolysis of different phenylenediamine based Schiff base-Co complexes (PDBs). Interestingly, the composites derived from PDBs based on different phenylenediamine exhibited different morphologies. The superior case is that rodlike composite catalyst was derived from o-phenylenediamine based PDBs. The obtained catalyst exhibited remarkable performances for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER), as well as overall water electrolysis. Only 172 and 289 mV of overpotentials and 1.57 V of cell voltage were exhibited at 10 mA cm?2 for HER, OER and water splitting in 1.0 M KOH, respectively. The catalyst also displayed robust stability and high Faraday efficiency, and thus are potential high-performance catalyst for commercial water electrolysis.  相似文献   
6.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
7.
8.
HFC-134a is a widely used environment-friendly refrigerant. At present, China is the largest producer of HFC-134a in the world. The production of HFC-134a in China mainly adopts the calcium carbide acetylene route. However, the production route has high resource and energy consumption and large waste emission, and few of the studies addressed on the environmental performance of its production process. This study quantified the environmental performance of HFC-134a production by calcium carbide route via carrying out a life cycle assessment (LCA) using the CML 2001 method. And uncertainty analysis by Monte-Carlo simulation was also carried out. The results showed that electricity had the most impact on the environment, followed by steam, hydrogen fluoride and chlorine, and the impact of direct CO2 emissions in calcium carbide production stage on the global warming effect also could not be ignored. Therefore, the clean energy (e.g., wind, solar, biomass, and natural gas) was used to replace coal-based electricity and coal-fired steam in this study, showing considerable environmental benefits. At the same time, the use of advanced production technologies could also improve environmental benefits, and the environmental impact of the global warming category could be reduced by 4.1% via using CO2 capture and purification technology. The Chinese database of HFC-134a production established in this study provides convenience for the relevant study of scholars. For the production of HFC-134a, this study helps to better identify the specific environmental hotspots and proposes useful ways to improve the environmental benefits.  相似文献   
9.
《Ceramics International》2022,48(5):6372-6384
Sm2O3-HfO2 series ceramics were synthesized at high temperature using the solid-state reaction. The phase stability, thermo-physical and infrared emission properties of Sm2Hf2O7 (SHO) and Sm2Hf2O7-44.83 wt%HfO2 (25S/H) composite ceramics were comparatively investigated. Furthermore, their calcium magnesium aluminosilicate (CMAS) corrosion was conducted at 1250°C for different times. The results reveal that both SHO and 25S/H ceramics have excellent phase stability at 1600°C as well as excellent sintering resistance. SHO still exhibits slightly lower thermal conductivity and lower hardness and Young's modulus, higher thermal expansion coefficient (CTE) and fracture toughness as well as higher infrared emittance (0.899 at 800°C) than 25S/H composite with the excessive HfO2 inside. Both SHO and 25S/H ceramics react with CMAS to form a relatively compact reaction layer, which can effectively prevent the penetration of CMAS. These results preliminarily indicate that SHO ceramic can be proposed as an alternative material of the traditional YSZ for high-temperature thermal protective applications thanks to its compatible performance of low thermal conductivity and high infrared radiation, etc.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号