首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4429篇
  免费   518篇
  国内免费   133篇
电工技术   197篇
综合类   250篇
化学工业   1768篇
金属工艺   264篇
机械仪表   70篇
建筑科学   67篇
矿业工程   28篇
能源动力   105篇
轻工业   229篇
水利工程   2篇
石油天然气   70篇
武器工业   18篇
无线电   585篇
一般工业技术   1291篇
冶金工业   56篇
原子能技术   7篇
自动化技术   73篇
  2024年   17篇
  2023年   110篇
  2022年   93篇
  2021年   149篇
  2020年   164篇
  2019年   164篇
  2018年   179篇
  2017年   165篇
  2016年   192篇
  2015年   181篇
  2014年   238篇
  2013年   238篇
  2012年   356篇
  2011年   333篇
  2010年   234篇
  2009年   277篇
  2008年   239篇
  2007年   273篇
  2006年   266篇
  2005年   223篇
  2004年   196篇
  2003年   147篇
  2002年   132篇
  2001年   90篇
  2000年   82篇
  1999年   68篇
  1998年   72篇
  1997年   43篇
  1996年   47篇
  1995年   38篇
  1994年   22篇
  1993年   18篇
  1992年   14篇
  1991年   10篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有5080条查询结果,搜索用时 15 毫秒
1.
介绍了高分子材料导热性能影响因素研究进展,重点阐释了聚合物基体的结构特性(链结构、分子间相互作用、取向、结晶度等)、导热填料(种类、含量、形态、尺寸等)以及制备方法等对高分子材料导热性能的影响。  相似文献   
2.
Graphene-based materials have attracted significant attention in many technological fields, but scaling up graphene-based technologies still faces substantial challenges. High-throughput top-down methods generally require hazardous, toxic, and high-boiling-point solvents. Here, an efficient and inexpensive strategy is proposed to produce graphene dispersions by liquid-phase exfoliation (LPE) through a combination of shear-mixing (SM) and tip sonication (TS) techniques, yielding highly concentrated graphene inks compatible with spray coating. The quality of graphene flakes (e.g., lateral size and thickness) and their concentration in the dispersions are compared using different spectroscopic and microscopy techniques. Several approaches (individual SM and TS, and their combination) are tested in three solvents (N-methyl-2-pyrrolidone, dimethylformamide, and cyrene). Interestingly, the combination of SM and TS in cyrene yields high-quality graphene dispersions, overcoming the environmental issues linked to the other two solvents. Starting from the cyrene dispersion, a graphene-based ink is prepared to spray-coat flexible electrodes and assemble a touch screen prototype. The electrodes feature a low sheet resistance (290 Ω □−1) and high optical transmittance (78%), which provide the prototype with a high signal-to-noise ratio (14 dB) and multi-touch functionality (up to four simultaneous touches). These results illustrate a potential pathway toward the integration of LPE-graphene in commercial flexible electronics.  相似文献   
3.
LiFePO4 modified by N-doped graphene (NG) with a three-dimensional conductive network structure was synthesized via a one-step in situ hydrothermal method. The effects of N amount of NG on the phase structure, morphology, and electrochemical properties of LiFePO4 are investigated in this study. X-ray diffraction (XRD) results show that doping suitable N amounts in NG do not alter the crystal structure of LiFePO4, and scanning electron microscopy (SEM) images show that NG can slightly reduce the particle size of LiFePO4. The high-resolution transmission electron microscopy (HRTEM) results show that the LiFePO4 particles are well covered and connected by NG. The electrochemical performance confirms that LiFePO4 modified by 20% N-doped graphene (named LFP/NG-4) displays a perfect specific capacity of 166.6 mAh·g?1 at a rate of 0.2C and can reach 125 mAh·g?1 at a rate of 5 C. Electrochemical impedance spectroscopy (EIS) results illustrate that the charge transfer resistance value of the LFP/NG-4 composite is only 58.6 Ω, which is very low compared with LiFePO4. Cyclic voltammetry (CV) tests indicate that the addition of 20% N-doped graphene can effectively reduce electrode polarization and improve reversibility. The LFP/NG-4 composite with a three-dimensional conductive network structure can be regarded as a promising cathode material for Li-ion batteries.  相似文献   
4.
Aqueous rechargeable Zinc (Zn)–polymer batteries are promising alternatives to prevalent Li-ion cells in terms of cost, safety, and rate capability but they suffer from limited specific capacity in addition to poor environmental adaptability. Herein, air and light are successfully utilized from external environments in single near-neutral two-electrode Zn batteries to enable remarkably improved electrochemical performance, fast self-charging, and switchable multimode-operation from Zn–polymer to Zn–air cells. This system is enabled by a well-designed polyaniline-nanorod-array based “all-in-one” cathode combining reversible redox capability, oxygen reduction activity, and photothermal-responsiveness. The initiative design allows perfect integration of multiple energy harvesting from ambient “air” and light, energy conversion, and storage in one single cathode. Thus, it can act as an efficient light-assisted electrically-rechargeable Zn–polymer cell featuring the highest specific capacity of 430.0 mAh g−1 among all existing polymer cathodes. Without external power sources, it can be self-charged to deliver a high discharging capacity of 363.1 mAh g−1 by concurrently harvesting chemical energy from air and light energy for only 20 min. It can also switch to a light-responsive Zn–air battery mode to surmount the output capacity limit of Zn–polymer battery mode for continued electricity supply.  相似文献   
5.
Low‐melting liquid metal is a hugely promising material for flexible conductive patterns due to its excellent conductivity and supercompliance, especially low‐cost and environmental liquid processing technology. However, the ever‐present fluidity characteristic greatly limits the stable shape and reliability of prepared liquid metal conductive electronics. Herein, a novel solidification strategy of liquid GaIn alloys by Ni doping and heat treatment is first reported, which can efficiently create a solid phase in the liquid metal and provide an effective solution for practical applications. Particularly, the liquid characteristic is preserved for conveniently fabricating different flexible electronic circuits, and then the solidification is carried out on prepared conductive patterns by heat treatment. The solidification mechanism is revealed by the interface chemical reaction between Ni and GaIn, creating the solid phase of intermetallic compound (Ga4Ni3 and InNi3) during heat treatment. Moreover, a biphasic GaInNi can be obtained by regulating the atomic ratio of gallium, indium, and nickel. As a result, the obtained GaInNi possesses extremely low sheet resistance (15 ± 4.5 to 135 ± 2.5 mΩ sq?1) and the variation of ΔR/R0 exhibits low level (0–2) when strained up to 100%, which offers a promising strategy to prepare stretchable and reliable liquid metal electronics.  相似文献   
6.
Oxidative steam reforming of methanol (OSRM), which is a convenient reaction for producing hydrogen, suffers from the hot spot formation problem when conventional particle catalysts are used. Recently, an anodic aluminum oxide (AAO)-supported Cu-Zn catalyst was proposed as an OSRM catalyst for its high thermal conductivity through the aluminum metal body. In this study, OSRM was conducted in a prototype reactor packed with the AAO plate catalyst strips. It was verified that the high thermal conductivity of the catalyst effectively suppresses the hot spot formation and makes the temperature profile smooth along the reactor. The start-up time of the reactor depended on the preheating temperature and was very short (less than 2 min) for preheating over 503 K. The methanol conversion and reactor temperature increased with increasing O2/CH3OH mole ratio, indicating that the mole ratio can be used as a control variable to operate the reactor at desired conditions. Further, a reactor model was developed and verified, and the simulation showed that for a given total reactor volume, an optimal reactor configuration could be achieved by shortening the reactor length while widening the cross-sectional area.  相似文献   
7.
In the study, polyaniline/reduced‐graphene oxide (PANI‐RGO) composites, fabricated by loading 2, 5, and 8wt% graphene oxide, was prepared by in‐situ emulsion polymerization and reduction. They are characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. Epoxy coatings adding PANI and PANI‐RGO composites were coated on the surface of AA5083 Al alloy. The anticorrosion performance of the coatings is measured by electrochemical impedance spectroscopy and potentiodynamic polarization curve in 3.5wt% NaCl solution. The results demonstrate that the epoxy/PANI‐RGO coating exhibits a better protection against AA5083 alloy corrosion compared with the epoxy/PANI coating. Enhancement of the passivation performance of PANI was obtained by the addition of RGO into epoxy/PANI coating system.  相似文献   
8.
《Ceramics International》2020,46(4):4344-4350
Indium-free flexible transparent conductive thin films (TCFs) composed of silver nanowire (AgNW) networks and Sb doped SnO2 (ATO) layers were prepared on polyethylene terephthalate (PET) substrates. The ATO layers were deposited via radio frequency (RF) magnetron sputtering at room temperature. The AgNWs were achieved via a modified polyol reduction method and embedded between the ATO layers. The effects of AgNW networks and ATO layers on electrical and optical properties of the ATO/AgNWs/ATO flexible tri-layer thin films are investigated. The ATO layers can improve the optical transmittance and reduce the resistivity of tri-layers, and the corresponding mechanisms are proposed. Typically, an ATO/AgNWs/ATO flexible tri-layers show a high figure of merit value (30.06 × 10-3 Ω-1) with a low sheet resistance of 7.1 Ω/sq. and a high transmittance of 85.7%. Meanwhile, the tri-layers present excellent mechanical flexibility, and the ATO layers acted as the protecting layers improve the adhesive and environmental stability at high temperature and humidity for the ATO/AgNWs/ATO flexible tri-layers. These results indicate that ATO/AgNWs/ATO flexible tri-layer thin films can be useful for the fabrication of wearable electronic devices.  相似文献   
9.
This paper describes and discusses the application of the original sintering process named cold sintering to the electrolyte material BaCe0.8Zr0.1Y0.1O3-δ to enhance its densification at a temperature below that needed in a conventional sintering. This new technique enables the acceleration of the densification resulting in a more compacted microstructure with an unexpected high relative density of 83 % at only 180 °C. A subsequent annealing at 1200 °C further enhances the densification which reaches 94 %. The electrochemical performance of CSP sintered ceramics was investigated and optimized by varying different process parameters. The comparison with the conventional sintered material reveals an increase of the total conductivity by mostly increasing the grain boundary one. This result emphasizes the benefits of CSP to not only reduce the sintering temperature but also to enhance the electrochemical properties.  相似文献   
10.
Due to the complexity of the screen-printing operation and the rheological behaviors of the screen-printable paste, such a paste is usually formulated by trial-and-error. In this report, a systematic procedure, based on heuristics and mechanistic models, for the design of a screen-printable paste is developed. The procedure is demonstrated by a case study of the formulation of a conductive paste of copper particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号