首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13998篇
  免费   580篇
  国内免费   545篇
电工技术   206篇
综合类   1092篇
化学工业   712篇
金属工艺   2992篇
机械仪表   3903篇
建筑科学   210篇
矿业工程   722篇
能源动力   119篇
轻工业   602篇
水利工程   30篇
石油天然气   1067篇
武器工业   94篇
无线电   536篇
一般工业技术   1192篇
冶金工业   428篇
原子能技术   78篇
自动化技术   1140篇
  2024年   19篇
  2023年   152篇
  2022年   215篇
  2021年   248篇
  2020年   331篇
  2019年   213篇
  2018年   213篇
  2017年   360篇
  2016年   349篇
  2015年   400篇
  2014年   676篇
  2013年   641篇
  2012年   862篇
  2011年   947篇
  2010年   669篇
  2009年   735篇
  2008年   678篇
  2007年   970篇
  2006年   951篇
  2005年   865篇
  2004年   752篇
  2003年   693篇
  2002年   556篇
  2001年   508篇
  2000年   416篇
  1999年   350篇
  1998年   271篇
  1997年   252篇
  1996年   215篇
  1995年   189篇
  1994年   125篇
  1993年   89篇
  1992年   62篇
  1991年   48篇
  1990年   30篇
  1989年   19篇
  1988年   14篇
  1987年   11篇
  1986年   4篇
  1985年   7篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1975年   1篇
  1958年   1篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
在多晶硅太阳能电池的生产过程中, 金刚线切割技术(Diamond wire sawn, DWS)具有切割速度快、精度高、原材料损耗少等优点, 受到了广泛关注。金刚线切割多晶硅表面形成的损伤层较浅, 与传统的酸腐蚀制绒技术无法匹配, 金属催化化学腐蚀法应运而生。金属催化化学腐蚀法制绒具有操作简单、结构可控且易形成高深宽比的绒面等优点, 具有广阔的应用前景。本文总结了不同类型的金属催化剂在制绒过程中的腐蚀机理及其形成的绒面结构, 深入分析和讨论了具有代表性的银、铜的单一及复合催化腐蚀过程及绒面结构和电池片性能。最后对金刚线切割多晶硅片表面的金属催化化学腐蚀法存在的问题进行了分析, 并展望了未来的研究方向。  相似文献   
2.
Low-dimensional carbon nanostructures are ideal nanofillers to reinforce the mechanical performance of polymer nanocomposites due to their excellent mechanical properties. Through molecular dynamics simulations, the mechanical performance of poly(vinyl alchohol) (PVA) nanocomposites reinforced with a single-layer diamond – diamane is investigated. It is found the PVA/diamane exhibits similar interfacial strengths and pull-out characteristics with the PVA/bilayer-graphene counterpart. Specifically, when the nanofiller is fully embedded in the nanocomposite, it is unable to deform simultaneously with the PVA matrix due to the weak interfacial load transfer efficiency, thus the enhancement effect is not significant. In comparison, diamane can effectively promote the tensile properties of the nanocomposite when it has a laminated structure as it deforms simultaneously with the matrix. With this configuration, the interlayer sp3 bonds endows diamane with a much higher resistance under compression and shear tests, thus the nanocomposite can reach very high compressive and shear stress. Overall, enhancement on the mechanical interlocking at the interface as triggered by surface functionalization is only effective for the fully embedded nanofiller. This work provides a fundamental understanding of the mechanical properties of PVA nanocomposites reinforced by diamane, which can shed lights on the design and preparation of next generation high-performance nanocomposites.  相似文献   
3.
The evaluation of the volumetric accuracy of a machine tool is an open challenge in the industry, and a wide variety of technical solutions are available in the market and at research level. All solutions have advantages and disadvantages concerning which errors can be measured, the achievable uncertainty, the ease of implementation, possibility of machine integration and automation, the equipment cost and the machine occupation time, and it is not always straightforward which option to choose for each application. The need to ensure accuracy during the whole lifetime of the machine and the availability of monitoring systems developed following the Industry 4.0 trend are pushing the development of measurement systems that can be integrated in the machine to perform semi-automatic verification procedures that can be performed frequently by the machine user to monitor the condition of the machine. Calibrated artefact based calibration and verification solutions have an advantage in this field over laser based solutions in terms of cost and feasibility of machine integration, but they need to be optimized for each machine and customer requirements to achieve the required calibration uncertainty and minimize machine occupation time.This paper introduces a digital twin-based methodology to simulate all relevant effects in an artefact-based machine tool calibration procedure, from the machine itself with its expected error ranges, to the artefact geometry and uncertainty, artefact positions in the workspace, probe uncertainty, compensation model, etc. By parameterizing all relevant variables in the design of the calibration procedure, this simulation methodology can be used to analyse the effect of each design variable on the error mapping uncertainty, which is of great help in adapting the procedure to each specific machine and user requirements. The simulation methodology and the analysis possibilities are illustrated by applying it on a 3-axis milling machine tool.  相似文献   
4.
A novel non-keyhole friction stir welding technique was proposed to weld the butt joint of 6061-T6 aluminum alloy with the thickness of 6 mm. A sound joint was obtained by this technique, simultaneously eliminating the flash, shoulder mark and keyhole defects. The sleeve directly affected zone (SDAZ) and the sleeve indirectly affected zone (SIAZ) were divided into the joint according to the plunging position of the hollow sleeve. The lack of root penetration defect was avoided when the plunging depth of the hollow sleeve was only 4.2 mm, because the hollow part inside the sleeve improved the material flow below the sleeve. An S-shaped line was left at the SIAZ, and the height of it had the minimum value of 1.47 mm at 20 mm/min. Whether the failure location of the joint was in SIAZ/SDAZ or the heat-affected zone (HAZ) depended on the height and bonding strength of the S-shaped line. The joint fracture location changed from the SIAZ/SDAZ at 35 mm/min to the HAZ at 20 and 30 mm/min. The maximum tensile strength of 224.3 MPa was obtained at 30 mm/min which was 73.7% of that of the base material. The fracture surface morphology exhibited the typical ductile fracture.  相似文献   
5.
This paper presents a Microsoft Excel tool to calculate liquid-gas mass transfer coefficients in packed towers to support numerical design activities in the courses of Unit Operations for Industrial Process and Sustainable Process Design for the Master’s degree in Chemical Engineering of the University of Naples Federico II (Italy).The Mass Transfer Solver Tool (MT Solver Tool) uses several available models to estimate, separately, the values of liquid and gas mass-transfer coefficients and the wet surface area for 144 random and structured packings of interest for absorption/stripping and distillation processes. In addition, a separate spreadsheet can be used in a user-defined mode, to evaluate the mass transfer coefficients with new packing types or to interpret experimental data when the geometrical and physical characteristics of the packing are known. Eventually, the tool is supplied with a data library, where packing geometry and model fitting parameters can be retrieved.The software is aimed to support students and educators in the Unit Operations for Industrial Process and Sustainable Process Design courses. In particular, this is meant to be an example on how the accuracy of design algorithms adopted in unit operation processes is affected by the use of the underpinning correlations for mass transfer rate or pressure drops. Besides, this is aimed to encourage comparison of different correlations when exact field data are not available. Besides, chemical engineers and researchers interested in packed columns design and modelling data may also benefit from the utilization of the software. The MT Solver Tool was introduced to students in a dedicated tutorial lesson after lecturers on packed column design algorithms for distillation, absorption and stripping. Most of the students of the course participated to a group training aimed to simulate the design of an absorption column supported by the MT Solver Tool providing feedback on its application.After the training, an anonymous survey was proposed to the students to monitor the approval rating of the proposed activity and the use of the MT Solver Tool software to support numerical calculations.  相似文献   
6.
Surface texture is considered an important measure to improve the cutting performance of a tool. In this study, we have prepared three types of textured and conventional tools on the rake face by an in-situ formed method. During the experiment, the best parameters of three types of textured tools were selected for dry cutting AISI 1045 steel at different cutting speeds. Cutting forces, cutting temperatures, workpiece surface roughness, and tool wear were measured during the cutting process. The results showed that textured tools have significantly reduced cutting force, cutting temperature, and tool wear, and the roughness of the workpiece was improved compared with the conventional tool. The micro-pit texture tool has less stress contact region than the micro-groove width texture tool, but the micro-groove width texture tool exhibiting the best cutting performance. This investigation clearly showed that the textured tool prepared by the in-situ formed method has improved cutting performance.  相似文献   
7.
8.
原子力显微镜(AFM)是获取金刚石刀具刃口纳米级三维形貌的重要手段,但其存在测量范围小,难以表征参与切削区域整段刃口形貌特征的问题。采用基于迭代最近点法的刃口AFM测量数据拼接算法,获得了由多组数据拼接得到的刃口纳米级三维形貌,并进行了切削实验验证。实验结果表明,采用的数据拼接方法可较好地用于表征刀具刃口三维形貌。  相似文献   
9.
A novel dual-rotation bobbin tool friction stir welding (DBT-FSW) was developed, in which the upper shoulder (US) and lower shoulder (LS) have different rotational speeds. This process was tried to weld 3.2 mm thick aluminum-lithium alloy sheets. The metallographic analysis and torque measurement were carried out to characterize the weld formability. Experimental results show that compared to conventional bobbin tool friction stir welding, the DBT-FSW has an excellent process stability, and can produce the defect-free joints in a wider range of welding parameters. These can be attributed to the significant improvement of material flow caused by the formation of a staggered layer structure and the unbalanced force between the US and LS during the DBT-FSW process.  相似文献   
10.
This paper assesses building integrated photovoltaic (BIPV) installation parameters based on the profit generated by a photovoltaic system. It takes into consideration a home building case study and it investigates its monthly energy demand based on a specific location and a typical occupancy. The capability of a photovoltaic (PV) system to generate more profit occurs when solar intensity is maximum while the electric energy price is at its highest rate. The paper traces a framework that encompasses different aspects such as energy demand, energy price, and solar intensity. This framework identifies profit alternatives according to different installation parameters. A tool that predicts a PV installation hourly electric energy production is developed. The profit generated is simulated for home buildings located in Beirut (Lebanon) and Xihua (China), both at 33.8° latitude north. The paper highlights a new approach for BIPV installations, taking into account weather conditions, energy demand, and electric energy utility rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号