首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5632篇
  免费   189篇
  国内免费   240篇
电工技术   74篇
综合类   265篇
化学工业   1948篇
金属工艺   1709篇
机械仪表   192篇
建筑科学   22篇
矿业工程   58篇
能源动力   103篇
轻工业   149篇
水利工程   2篇
石油天然气   46篇
武器工业   54篇
无线电   323篇
一般工业技术   879篇
冶金工业   178篇
原子能技术   33篇
自动化技术   26篇
  2024年   2篇
  2023年   28篇
  2022年   63篇
  2021年   75篇
  2020年   84篇
  2019年   63篇
  2018年   82篇
  2017年   175篇
  2016年   124篇
  2015年   158篇
  2014年   165篇
  2013年   213篇
  2012年   319篇
  2011年   423篇
  2010年   336篇
  2009年   340篇
  2008年   314篇
  2007年   443篇
  2006年   467篇
  2005年   373篇
  2004年   347篇
  2003年   249篇
  2002年   234篇
  2001年   180篇
  2000年   158篇
  1999年   107篇
  1998年   109篇
  1997年   75篇
  1996年   80篇
  1995年   66篇
  1994年   82篇
  1993年   34篇
  1992年   21篇
  1991年   25篇
  1990年   20篇
  1989年   14篇
  1988年   5篇
  1986年   5篇
  1984年   2篇
  1977年   1篇
排序方式: 共有6061条查询结果,搜索用时 15 毫秒
1.
三聚硫氰酸单钠盐是一种新型的多官能团化精细化学品。介绍了三聚硫氰酸单钠盐的制备方法,以及其在橡胶硫化、橡胶与金属的硫化粘合等领域的应用研究进展。  相似文献   
2.
As a new advanced oxidation technology, photocatalytic technology has broad application prospects in the field of wastewater treatment. However, in the actual use process, there will be difficulties in catalyst recovery and reuse. This article successfully prepared bacterial cellulose (BC) loaded silver and titanium dioxide nanoparticles (Ag-plated TiO2/BC composite pellicle) by in situ embedding method. BC not only works as the carrier to load TiO2 and Ag NPs but also adsorbs dyes to promote the reaction. As a reusable photocatalytic film, it is convenient to use and recycle in terms of testing and characterization compared with powders. The results show that Ag and TiO2 nanoparticles were closely embedded in BC. We evaluated the photocatalytic degradation performance of the catalyst on methylene blue (MB), active red X-3B, and Rhodamine B. When the reaction time was 2 h, the dye removal rates were 71%, 68%, and 82.6%. At the same time, through the inhibition zone experiment, it was found that the material has a certain inhibitory effect on both Escherichia coli and Staphylococcus aureus. Therefore, the supported catalyst prepared by this method has the advantages of high catalytic activity, relatively stable property, easy recovery, and tailorability, making it potentially applicable in sewage post-treatment links.  相似文献   
3.
针对镀液温度变化的非线性和滞后性,设计了采用专家规则的镀液温度实时控制系统。该系统在实时监测的基础上,构建了综合评判镀液温度偏差和镀液温度偏差变化率的专家规则,实现了镀液温度的自适应快速调节。仿真分析结果表明,该系统克服了非线性和滞后性的不良影响,能够实现镀液温度的实时控制。  相似文献   
4.
《Ceramics International》2021,47(18):25287-25295
The presence of SiC nanoparticles within the Graphene oxide (GO) incorporated electroless deposited NiP layers (NiP-GO) on carbon steel substrate was studied in this work. The effect of co-deposition of GO nanoplatelets and/or SiC nanoparticles on the morphology and structure of the heat-treated NiP coatings were investigated by scanning electron microscope and X-ray diffraction, respectively. The results revealed that the heat-treated NiP and NiP–SiC coatings consisted of Ni and Ni3P phases, whereas the NiP-GO also contains the intermediated Ni2P and Ni12P5 metastable phases due to the incomplete precipitation of Ni3P. Such metastable phases are significantly decreased by the incorporation of SiC nanoparticles in NiP-GO coatings. The mechanical properties of the coatings were characterized by microhardness measurement and “pin on disk” wear test. The corrosion tests were conducted in aqueous 3.5 %wt NaCl using electrochemical measurement for Ni–P, NiP-GO, NiP–SiC, and NiP-GO-xSiC coatings. By co-deposition of SiC nanoparticles, the hardness of NiP-GO is significantly increased and the wear loss is reduced, especially at a high sliding distance during the wear test. The corrosion behavior of the NiP-GO coatings containing different amounts of SiC nanoparticles has been investigated.  相似文献   
5.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   
6.
Thermal and mechanical resistances of palladium composite membranes prepared by Electroless Pore-Plating (ELP-PP) and containing SBA-15 as intermediate layer were improved by doping the silica material with Pd nuclei before its incorporation on the composite membrane. Textural properties of synthesized SBA-15 materials (both raw and doped ones) were analyzed by XRD, N2 adsorption-desorption at 77 K and TEM, while the main properties of the composite membrane were determined by SEM and gravimetric analyses. Moreover, membrane permeation tests were also carried out with pure gases, hydrogen and nitrogen, and binary mixtures of them at temperature of 400 °C and pressure driving forces in the range of 0.5–2.5 bar. The use of bare SBA-15 intermediate layer leads to the appearance of cracks on the Pd layer during permeation experiments at high temperature. In contrast, the use of Pd-doped SBA-15 particles avoids this problem, thus improving both thermal and mechanical resistances of the composite ELP-PP Pd-membrane. Following this preparation method, an estimated Pd thickness of 7.1 μm was obtained, reaching a hydrogen permeance of 3.81·10?4 mol s?1 m?2 Pa?0.5 and ensuring an ideal H2/N2 separation factor higher than 2550 at 400 °C.  相似文献   
7.
Substrate surface modification is a key pretreatment during fabrication of composite palladium membranes for hydrogen purification in hydrogen energy applications. The suspension of a natural porous material, Nontronite-15A mineral, without any organic additives was employed in dip-coating of the porous Al2O3 substrate. The Nontronite-15A mineral was characterized by SEM, XRD, TG−DSC and granulometry analysis. The surface and cross-section of the coated porous Al2O3 tubes were observed by SEM, and their pore size distribution and nitrogen flux were also measured. Palladium membranes were fabricated over the coated Al2O3 tubes by a suction-assisted electroless plating. The optimal loading amount of the Nontronite-15A mineral is just to fill in and level up the surface cavities of the Al2O3 substrate rather than to form an extra continuous layer. A thin and selective palladium membrane was successfully obtained, and its permeation performances were tested. The kinetic analyses on the hydrogen flux indicate that the hydrogen permeation behavior exhibits typical characteristics for most of the palladium membranes. During the stability test at 450 °C for 192 h, no membrane damage was detected, and the hydrogen flux increased slightly.  相似文献   
8.
Surface oxidation of the in-flight powders during the preparation of amorphous coatings in high velocity oxygen fuel process causes the formation of oxygen-rich intersplat regions. These regions are brittle in nature and can dramatically deteriorate the mechanical performance of the coatings. To solve this problem, the starting FeCrMoCBY amorphous feedstock powders were modified by electroless plating a thin layer of Ni–W–P amorphous phase. It was found that the covering of the Ni–W–P layer can significantly reduce the oxygen content in the resultant Fe-based amorphous coatings. The wear resistance of the coatings with and without the modification of Ni–W–P thin layer was comparatively studied by ball-on-disk wear tests against Si3N4 counterpart in air. It revealed that the wear of two types of coatings follows the same oxidation wear mechanism but the modified coating exhibits much better wear resistance due to the improved oxidation resistance.  相似文献   
9.
In this study, open-cell Ni–Sn–P alloy foams were prepared by electroless plating. The influence of tin content on the surface morphology and properties of Ni–Sn–P alloy foams were investigated. The surface structure of Ni–Sn–P alloy foams became more uniform and compact with the increase of Sn content. The X-ray diffraction result showed that Ni–Sn–P alloy foams gradually transformed from an amorphous structure into crystallization with the increase of heat-treatment temperature. The introduction of Sn significantly enhanced the corrosion resistance of Ni–P coatings in 3.5 wt% NaCl solution, the corrosion current density decreased from 5.022 to 0.805 μA/cm2 and the corrosion potential shifted positively from −0.423 to −0.294 V after adding 5.96 wt% Sn to Ni–P coatings. However, the corrosion resistance of Ni–Sn–P foams was deteriorated after heat treatment. Adding Sn to the Ni–P system slightly weakened the compressive strength of Ni–P binary foams. Nevertheless, significant improvement in the antioxidant performance of Ni–Sn–P alloy foams was indicated by the reduction of the mass change rate in that the mass change rate of Ni–P foams obviously reduced from 5.15% to 0.25% after adding 5.96 wt% Sn.  相似文献   
10.
本文使用低压冷喷涂技术,分别在45#钢基体与45#钢加镀铬层基体上制备铜锌涂层试样。通过静态浸泡与铜加速醋酸盐雾腐蚀试验(CASS)对涂层和涂层加镀铬层试样的腐蚀性能进行研究;采用SEM、XPS对腐蚀前后涂层与镀铬层的微观形貌与元素进行表征。结果表明:静态腐蚀过程中,铜锌涂层的耐腐蚀性优于铜锌涂层加镀铬层;CASS实验中,随着原始粉体中锌含量的增加,涂层试样与涂层加镀铬层试样的耐腐蚀性能提高,当铜锌比为6:4时,对应涂层试样、涂层加镀铬层试样与纯镀铬层的耐腐性能达到六级。铜锌涂层在腐蚀液中由于电化学腐蚀及氯化作用,导致铜锌均发生了腐蚀,其腐蚀产物主要为Zn(OH)2、Cu2O与CuCl2。铜锌涂层加镀铬层试样在腐蚀过程中,锌的腐蚀在一定成上可以起到减缓镀铬层腐蚀的作用,这种减缓的作用与镀铬层上析出的铜膜共同保护镀铬层,增强其耐腐蚀性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号