首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   472篇
  免费   31篇
  国内免费   6篇
电工技术   50篇
综合类   13篇
化学工业   101篇
金属工艺   18篇
机械仪表   2篇
矿业工程   2篇
能源动力   224篇
石油天然气   3篇
无线电   31篇
一般工业技术   61篇
冶金工业   3篇
自动化技术   1篇
  2023年   32篇
  2022年   53篇
  2021年   51篇
  2020年   52篇
  2019年   39篇
  2018年   21篇
  2017年   14篇
  2016年   10篇
  2015年   7篇
  2014年   14篇
  2013年   8篇
  2012年   19篇
  2011年   24篇
  2010年   20篇
  2009年   17篇
  2008年   17篇
  2007年   27篇
  2006年   17篇
  2005年   8篇
  2004年   14篇
  2003年   12篇
  2002年   11篇
  2001年   3篇
  2000年   8篇
  1999年   4篇
  1997年   1篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
排序方式: 共有509条查询结果,搜索用时 218 毫秒
1.
The speed of the oxygen evolution reaction seriously affects the hydrogen production efficiency of water electrolysis. Hence it is crucial to develop efficient and durable OER electrocatalysts. Construction of heterojunction catalysts is also one of the strategies to develop efficient catalysts. In this paper, a pea-like Cu/Cu2S–C3 Mott?Schottky electrocatalyst was self-constructed by vapor deposition, while CF (copper foam) was used as substrate material and copper source, and thiourea was served as sulfur source. The built-in electric field is formed at the metal-semiconductor interface, which endows it with promising electrocatalytic performance. As the working electrode, the overpotentials of Cu/Cu2S–C3 required to reach the current density of 10 and 50 mA cm?2 were about 170 and 335 mV. The impact of the Mott-Schottky structure on the catalyst was also reflected in stability. The i-t tests of the sample Cu/Cu2S–C3 were carried out under 10 and 60 mA cm?2 and performed well.  相似文献   
2.
Transition metal-based electrocatalysts supported on carbon substrates face the challenges of anodic corrosion of carbon during oxygen evolution reaction at high oxidation potential. The role of electrophilic functional groups (carbonyl, pyridinic, thiol, etc.) incorporated in graphene oxide has been studied towards the anodic corrosion resistance. Heteroatom functionalized carbon supports possess modified electronic properties, surface oxygen content, and hydrophilicity, which are crucial in governing electrochemical corrosion in the alkaline oxidative environment. Evidently, electron-withdrawing groups in NGO support (pyridinic, cyano, nitro, etc) and its lower oxygen content impart maximum corrosion resistance and anodic stability in comparison to the other sulfur-doped and co-doped graphene oxide support. In this report, we establish the baseline evaluation of carbon-supported OER electrocatalysts by a systematic analysis of activity and substrate corrosion resistance. The result of this study establishes the role of surface composition of the doped supports while for designing a stable, corrosion-resistant OER electrocatalyst.  相似文献   
3.
Developing inexpensive and efficient electrocatalysts for hydrogen evolution reaction (HER) in both acidic and alkaline mediums is of great significance to the hydrogen energy industry. Hereby, we prepared a mixture of precursors with homogeneous composition by using the chelating ability of soybean protein isolate (C and N source) and phytic acid (dopant and phosphating agent) with cobalt ions, and achieved one-step synthesis and construction of Co2P/N–P co-doped porous carbon composite by carbonization at 800 °C. The as-synthesized Co2P/NPPC-800 electrocatalyst exhibits low HER overpotentials of 121 and 125 mV at 10 mA cm?2 in 0.5 M H2SO4 and 1.0 M KOH, which are close to those of the commercial Pt/C catalyst. Additionally, the NPPC substrate surrounding the Co2P could diminish the corrosion during the HER, and Co2P/NPPC-800 displays good stability and durability. Furthermore, this work offers a convenient synthesis strategy for phosphide/doped porous carbon composites in other electrochemical energy technologies.  相似文献   
4.
Searching high-active, stable and abundant bifunctional catalysts to replace noble metals for hydrogen and oxygen evolution reactions (HER and OER) is desired. Herein, petal-like NiCoP sheets were synthesized on carbon paper covered with a 3D nitrogen-doped carbon nanofiber network (NiCoP/CNNCP) by a simple hydrothermal process followed by phosphorization. The HER overpotential in 0.5 M H2SO4 and OER overpotential in 1 M KOH of the NiCoP/CNNCP electrode only required 55 mV and 260 mV to drive a current density of 10 mA cm?2, respectively, which was comparable or even better than most nickel-and cobalt-based phosphide catalysts. The overall water-splitting electrolyzer with an asymmetric electrolyte system assembled using NiCoP/CNNCP as bifunctional electrodes required an extremely low cell voltage of 1.04 V to achieve a current density of 10 mA cm?2, which was much lower than almost all alkaline electrolysis systems.  相似文献   
5.
6.
锡基材料在自然界含量丰富、价格低廉, 在电催化还原CO2制液体燃料反应中具有巨大潜力。但是较低的产物选择性和较差的稳定性限制了其应用。本工作制备的锡量子点电催化剂(Sn-QDs), 具有高效、高稳定性和高选择性的电催化还原CO2产HCOOH活性。Sn-QDs的平均颗粒尺寸仅为2~3 nm, 结晶性良好。小的颗粒尺寸增大了电化学活性面积(ECSA), Sn-QDs的ECSA约为锡颗粒的4.4倍。ECSA增大以及CO2还原反应动力学加速, 促进了CO2电化学转化。在-1.0 V (vs RHE)下, Sn-QDs/CN催化剂的HCOOH法拉第效率(FEHCOOH)达到95%, 并且在宽约0.5 V的电势范围内能够保持在83%以上。此外, Sn-QDs/CN可以在24 h内保持良好的电化学稳定性。  相似文献   
7.
Copper catalysts are widely studied for the electroreduction of carbon dioxide (CO2) to value-added hydrocarbon products. Controlling the surface composition of copper nanomaterials may provide the electronic and structural properties necessary for carbon-carbon coupling, thus increasing the Faradaic efficiency (FE) towards ethylene and other multi-carbon (C2+) products. Synthesis and catalytic study of silver-coated copper nanoparticles (Cu@Ag NPs) for the reduction of CO2 are presented. Bimetallic CuAg NPs are typically difficult to produce due to the bulk immiscibility between these two metals. Slow injection of the silver precursor, concentrations of organic capping agents, and gas environment proved critical to control the size and metal distribution of the Cu@Ag NPs. The optimized Cu@Ag electrocatalyst exhibited a very low onset cell potential of −2.25 V for ethylene formation, reaching a FE towards C2+ products (FEC2+) of 43% at −2.50 V, which is 1.0 V lower than a reference Cu catalyst to reach a similar FEC2+. The high ethylene formation at low potentials is attributed to enhanced C C coupling on the Ag enriched shell of the Cu@Ag electrocatalysts. This study offers a new catalyst design towards increasing the efficiency for the electroreduction of CO2 to value-added chemicals.  相似文献   
8.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
9.
In the present research, nanostructured Pd–Cd alloy electrocatalysts with different compositions were produced using the electrodeposition process. The morphology of the samples was studied by scanning electron microscopy analysis. Also, the elemental composition of the samples was determined by energy-dispersive X-ray spectroscopy and elemental mapping tests. Tafel polarization and electrochemical impedance spectroscopy methods were employed to determine the electrochemical corrosion properties of the synthesized samples in a solution containing 0.5 M sulfuric acid and 0.1 M formic acid. The linear sweep voltammetry, cyclic voltammetry, and chronoamperometry techniques were also employed to evaluate the electrocatalytic activity of prepared samples toward the oxidation of formic acid. In this respect, the influence of some factors such as formic acid and sulfuric acid concentrations and also potential scan rate was investigated. Compared to the pure Pd sample, the Pd–Cd samples were more reactive for the oxidation of formic acid. Besides, the sample with a lower amount of Pd (Pd1·3Cd) demonstrated much higher electrocatalytic activity than the Pd7·1Cd and Pd2·1Cd samples. The observed high mass activity of 15.06 A mg?1Pd for the Pd1·3Cd sample which is 21.1 times higher than Pd/C is an interesting result of this study.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号