首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   52篇
  国内免费   140篇
电工技术   13篇
综合类   32篇
化学工业   52篇
金属工艺   438篇
机械仪表   47篇
建筑科学   6篇
矿业工程   8篇
能源动力   249篇
轻工业   6篇
石油天然气   49篇
武器工业   11篇
无线电   10篇
一般工业技术   288篇
冶金工业   99篇
原子能技术   50篇
自动化技术   1篇
  2024年   1篇
  2023年   42篇
  2022年   60篇
  2021年   50篇
  2020年   53篇
  2019年   53篇
  2018年   47篇
  2017年   36篇
  2016年   22篇
  2015年   26篇
  2014年   51篇
  2013年   67篇
  2012年   40篇
  2011年   78篇
  2010年   51篇
  2009年   59篇
  2008年   55篇
  2007年   34篇
  2006年   41篇
  2005年   49篇
  2004年   49篇
  2003年   37篇
  2002年   46篇
  2001年   34篇
  2000年   24篇
  1999年   32篇
  1998年   35篇
  1997年   39篇
  1996年   38篇
  1995年   25篇
  1994年   19篇
  1993年   14篇
  1992年   11篇
  1991年   12篇
  1990年   7篇
  1989年   10篇
  1988年   8篇
  1987年   2篇
  1984年   1篇
  1959年   1篇
排序方式: 共有1359条查询结果,搜索用时 15 毫秒
1.
In this work, a practical numerical model with few parameters was proposed for the prediction of environmental hydrogen embrittlement. The proposed method adopts hydrogen enhanced plasticity-based mechanism in a fracture strain model to describe hydrogen embrittlement. Fracture toughness degradation of three commercial steels SA372J70, AISI4130 and X80 in high pressure hydrogen environment were investigated. Firstly, governing equations for hydrogen distribution and material damage evolution was established. Hydrogen enhanced localized flow softening effect was coupled within fracture strain dependency on stress triaxiality. Then, the numerical implementation and identification process of model parameters was described. Model parameters of the investigated steels were determined based on experiment results from literatures. Finally, with the calibrated model, fracture toughness reduction of the steels was predicted in a wide range of hydrogen pressure. The prediction results were compared with experimental results. Reasonable accuracy was reached. The proposed method is an attempt to reach balance between physical accurate prediction and engineering practicality. It is promising to provide a simplified numerical tool for the design and fit for service evaluation of hydrogen storage vessels.  相似文献   
2.
Hydrogen transportation by pipelines gradually becomes a critical engineering route in the worldwide adaptation of hydrogen as a form of clean energy. However, due to the hydrogen embrittlement effect, the compatibility of linepipe steels and associated welds with hydrogen is a major concern when designing hydrogen-carrying pipelines. When hydrogen enters the steels, their ductility, fracture resistance, and fatigue properties can be adversely altered. This paper reviews the status of several demonstration projects for natural gas-hydrogen blending and pure hydrogen transportation, the pipeline materials used and their operating parameters. This paper also compares the current standards of materials specifications for hydrogen pipeline systems from different parts of the world. The hydrogen compatibility and tolerance of varying grades of linepipe steels and the relevant testing methods for assessing the compatibility are then discussed, and the conservatism or the inadequacies of the test conditions of the current standards are pointed out for future improvement.  相似文献   
3.
The study of steels which guarantee safety and reliability throughout their service life in hydrogen-rich environments has increased considerably in recent years. Their mechanical behavior in terms of hydrogen embrittlement is of utmost importance. This work aims to assess the effects of hydrogen on the tensile properties of quenched and tempered 42CrMo4 steels. Tensile tests were performed on smooth and notched specimens under different conditions: pre-charged in high pressure hydrogen gas, electrochemically pre-charged, and in-situ hydrogen charged in an acid aqueous medium. The influence of the charging methodology on the corresponding embrittlement indexes was assessed. The role of other test variables, such as the applied current density, the electrolyte composition, and the displacement rate was also studied. An important reduction of the strength was detected when notched specimens were subjected to in-situ charging. When the same tests were performed on smooth tensile specimens, the deformation results were reduced. This behavior is related to significant changes in the operative failure micromechanisms, from ductile (microvoids coalescence) in absence of hydrogen or under low hydrogen contents, to brittle (decohesion of martensite lath interfaces) under the most stringent conditions.  相似文献   
4.
The effect of ammonia (NH3) contained in hydrogen (H2) gas on hydrogen environment embrittlement (HEE) of SCM440 low-alloy steel was studied in association with the NH3 concentration, loading rate, and gas pressure. NH3 worked as both mitigator of the HEE and inducer of hydrogen embrittlement (HE) depending on the testing conditions. The mitigation of the HEE was achieved by the deactivation of the iron (Fe) surface for H2 dissociation caused by the preferential adsorption of NH3 on the Fe surface, which is enhanced by the increase in the NH3 concentration and decrease in the H2 gas pressure. NH3 induced HE was caused due to creating hydrogen by the NH3 decomposition. Since the NH3 decomposition rate is low, the induction effect was observed when the loading rate was low. The effect of NH3 was determined by the competition of the mitigation and induction effects.  相似文献   
5.
The effect of the annealing temperature after cold rolling on hydrogen embrittlement resistance was investigated with a face-centered cubic (FCC) equiatomic CoCrFeMnNi high-entropy alloy using tensile testing under electrochemical hydrogen charging. Decreasing annealing temperature from 800 °C to 750 °C decreased grain sizes from 3.2 to 2.1 μm, and resulted in the σ phase formation. Interestingly, the specimen annealed at 800 °C, which had coarser grains, showed a lower hydrogen embrittlement susceptibility than the specimen annealed at 750 °C, although hydrogen-assisted intergranular fracture was observed in both annealing conditions. Because the interface between the FCC matrix and σ was more susceptible to hydrogen than the grain boundary, the presence of the matrix/σ interface significantly assisted hydrogen-induced mechanical degradation. In terms of intergranular cracking, crack growth occurred via small crack initiation near a larger crack tip and subsequent crack coalescence, which has been observed in various steels and FCC alloys that contained hydrogen.  相似文献   
6.
7.
Alloy hardened steels offer excellent combination of mechanical properties, hardenability and corrosion resistance. 34CrMo4 is a medium carbon, low alloy steel widely used due to a good combination of high-strength, toughness and wear resistance. However, this steel experiences hydrogen embrittlement (HE), a complex phenomenon depending on the composition and microstructure. This work estimates de loss of the mechanical properties caused by hydrogen in electrochemically H-charged specimens in absence of mechanical stress but also, at low strain rate and constant load. H-charging for 2 and 6 h induce YS losses of about 40% and 71% and UTS losses of 39% and 59%, respectively. The synergistic effect of the stress and the H-charging process leads to a higher loss, 91%, and a faster brittle fracture even though hydrogen content is similar to those firstly H-charged and then tested in air.  相似文献   
8.
The nickel-base superalloy 718 is a precipitation hardened alloy widely used in the nuclear fuel assembly of pressurized water reactors (PWR). However, the alloy can experience failure due to hydrogen embrittlement (HE). The processing route can influence the microstructure of the material and, therefore, the HE degree. In particular, the size and distribution of the (Nb,Ti)C particles can be affected by the processing. In this regard, the objective of this work was to analyze the influence of cold and hot deformation processing routes on the development of the microstructure, and the consequences on mechanical properties and hydrogen embrittlement. Tensile samples were hydrogenated through gaseous charging and compared to non-hydrogenated samples. Characterization was performed via scanning and transmission electron microscopies, as well as electron backscattered diffraction. The processing was effective to promote significant variations in average grain size and length fraction of special Σ3n boundaries, as well as reduction of average (Nb,Ti)C particle size, being these changes more intense for the cold-rolled route. For the mechanical properties, on one side, the cold-rolled route presented the highest increase in ductility for non-hydrogenated samples, while, on the other side, had the highest degree of embrittlement under hydrogen. This dual behavior was attributed to the interaction of hydrogen with the (Nb,Ti)C particles and stringers and its ensuing influence on the fracture processes.  相似文献   
9.
10.
Numerous studies have shown that Ni-based superalloy 718 may be sensitive to hydrogen embrittlement and have highlighted the dominant roles played by the hydrogen solubility and the hydrogen trapping. Samples were hydrogenated by cathodic polarization in molten salts under different conditions to vary the diffusible hydrogen content and to saturate the different hydrogen traps present in the microstructure strengthened by precipitation. Open circuit potential and galvanic coupling measurements were conducted in order to characterize the effect of diffusible and trapped hydrogen on electrochemical behavior and to discuss the possibility of galvanic coupling between zones with different hydrogen contents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号