首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21262篇
  免费   1820篇
  国内免费   1055篇
电工技术   541篇
综合类   1080篇
化学工业   4105篇
金属工艺   2499篇
机械仪表   1243篇
建筑科学   777篇
矿业工程   440篇
能源动力   869篇
轻工业   859篇
水利工程   149篇
石油天然气   570篇
武器工业   97篇
无线电   3072篇
一般工业技术   6583篇
冶金工业   594篇
原子能技术   270篇
自动化技术   389篇
  2024年   26篇
  2023年   253篇
  2022年   266篇
  2021年   474篇
  2020年   490篇
  2019年   475篇
  2018年   540篇
  2017年   674篇
  2016年   715篇
  2015年   767篇
  2014年   1066篇
  2013年   1401篇
  2012年   1421篇
  2011年   1911篇
  2010年   1480篇
  2009年   1458篇
  2008年   1271篇
  2007年   1425篇
  2006年   1342篇
  2005年   955篇
  2004年   941篇
  2003年   813篇
  2002年   676篇
  2001年   550篇
  2000年   463篇
  1999年   353篇
  1998年   341篇
  1997年   278篇
  1996年   206篇
  1995年   180篇
  1994年   150篇
  1993年   136篇
  1992年   137篇
  1991年   133篇
  1990年   91篇
  1989年   51篇
  1988年   40篇
  1987年   27篇
  1986年   30篇
  1985年   30篇
  1984年   24篇
  1983年   11篇
  1982年   14篇
  1981年   6篇
  1979年   5篇
  1978年   8篇
  1976年   7篇
  1975年   6篇
  1974年   9篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Thin multilayer coatings of ZrO2–Y2O3–Al2O3 were prepared using the sol-gel method and dip-coating technique in order to advance in the study of what influence the incorporation of Al2O3 has on films of Y2O3-doped ZrO2, investigating its role in the synthesis of the solutions and in the characteristics and properties of the coatings. After the characterization of the solutions used in the process, the microstructure of the films was studied and their mechanical behaviour and resistance to thermal shock were determined so as to optimize the characteristics and functionality of these coatings. With increased alumina content, 3YSZ-Al2O3 (20 mol%), the cubic phase of the zirconia disappeared completely at the sintering temperature used (700 °C), resulting in the tetragonal phase with Al in solution. There was also a decrease in the coatings' hardness and Young's modulus, and an increase in toughness and resistance to thermal shock. These results allow guidelines to be established for the design of multilayer structures that are, tougher, more resistant, and have improved surface properties.  相似文献   
2.
《Ceramics International》2021,47(18):25574-25579
Vanadium dioxide (VO2) is known as a typical 3d-orbital transition metal oxide exhibiting the metal-to-insulator-transition (MIT) property near room temperature. However, their electronic applications have been challenged by the quality and uniformity of VO2 thin films. In this work, we demonstrate the high sensitivity in the valence charge of vanadium and the MIT properties of the VO2 thin films to the deposition temperature. This observation indicates the necessity to eliminate the inhomogeneity in the temperature distribution of substrate during the vacuum-deposition process of VO2. In addition, a high thermoelectric power factor (PF, e.g., exceeding 1 μWcm−1K−2) was achieved in the metallic phase of the VO2 thin films and this value is comparable to typical organic or oxide thermoelectric materials. We believe this high PF enriches the potential functionality in thermoelectric energy conversions beyond the existing electronic applications of the current vacuum-grown VO2 thin films.  相似文献   
3.
《Ceramics International》2021,47(22):31442-31450
ITO/Ag/ITO multilayer thin films have been a potential substitute of the conventional single-layer transparent conducting film. Nevertheless, the mechanical stability under preparation and in-service conditions still limits their applications and developments. In this paper, the influences of different structural properties as well as layer structure on both surface morphological properties and mechanical properties of the ITO/Ag/ITO multilayer thin films in comparison with commercial single-layer ITO thin film were systematically investigated. The results demonstrate that, i) the tri-layer composite has large impacts on the preferential orientation, and exhibits the decreased values of surface roughness, net lattice distortion and residual stress; ii) the increased hardness (H) and decreased Young's modulus (E) for full annealed ITO/Ag/ITO multilayer films indicate that it is possible to tailor mechanical properties of the materials by manufacturing multilayer composite; iii) the ITO/Ag/ITO multilayer thin film exhibits remarkable improvements in wear resistance with the increase of annealing temperature, which is mainly attributed to the increased ratios of H/E and H3/E2.  相似文献   
4.
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films are attracting famous applications in antistatic coating, energy storage and conversion, printed electronics, and biomedical fields due to their conductivity, optical transparency and flexibility. However, PEDOT:PSS has poor dispersion stability during long-term storage and transport. Moreover, the dried PEDOT:PSS films are insoluble in any solvent and cannot be redispersed again. In comparison to bake drying, here, a feasible strategy to achieve mechanically redispersed PEDOT:PSS with the help of freeze-drying process was reported. The redispersed PEDOT:PSS can recover not only the initial characters such as pH, chemical composition, viscosity, and particle size under similar solid contents, but also conductivity and surface morphology of treated films. In addition, the treated film exhibits self-healing properties similar to pristine film in terms of mechanical and electrical properties. This technology enables reuse and overcomes the technical problems of PEDOT:PSS dispersion, realizing real-time processing to meet variable applications.  相似文献   
5.
Diamond-like carbon (DLC) possesses brilliant and excellent properties, including excellent corrosion resistance as well as outstanding wear resistance. Ni and B co-doped DLC films were deposited on AZ91D magnesium alloy by electrodeposition under mild conditions (300 V and 25°C). Uniform and dense morphology of co-doped DLC films were observed, and Ni and B were uniformly incorporated into the carbon-based films. Among all the electrodeposits, the appearance of D and G peaks near 1330 and 1570 cm−1 revealed that the as-deposited films were typical DLC films. As the addition of Ni was increased to 0.05 g, the highest microindentation hardness, the lowest friction coefficient, and wear loss were achieved to be 164.5 HV, 0.3, and 0.6 × 10−5 kg/m, respectively. The amorphous carbon films fabricated at 0.05 g Ni had the lowest corrosion current density and the most positive corrosion potential, which was mainly due to the small and dense granular structure effectively hindering the penetration of corrosion media.  相似文献   
6.
The luminescent hydrogen-bonded organic framework (HOF) based films have become one of the most remarkable materials for optical application, thus, developing facile synthesis methods and establishing multifunctional applications for HOF-based luminescent materials are essential. Herein, a dual-emitting Eu3+-functionalized HOF hydrogel film ( 1 ) is fabricated successfully. 1 emits a blue-green long afterglow when turning off the UV lamp, and the long afterglow lifetime gets to 1.99 s. 1 performs great selectivity, high sensitivity, and low detection limit toward ofloxacin and flumequine, and the sensing toward ofloxacin and flumequine is in accord with the chroma and ratio modes. The fluorescent response mechanisms of 1  toward ofloxacin and flumequine are investigated in depth, which are further utilized to build an anticounterfeiting platform with high-level security. The film-based anticounterfeiting platform can conduct information encryption on demand inline with different fluorescent responses and can also fetch specific information by controlling the long afterglow intensity and excited light. This study not only provides a representative case of the fabrication of dual-emitting Eu3+-functionalized HOF-based hydrogel film but also opens the possibility of HOF-based film as intelligent luminescent materials with multifunctionalities.  相似文献   
7.
Flexible and hydrophobic biobased films were obtained using zein esterified with methanol and para-toluene (p-toluene) sulfonic acid, cutin from tomato peels and ethanol. Esterification was confirmed by proton nuclear magnetic resonance and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR). Non-modified zein films were brittle and hydrophilic. ATR-FTIR demonstrated that zein esterification increased zein hydrophobicity. Without cutin, esterified zein films were hydrophobic but brittle. Addition of cutin yielded films that were flexible and hydrophobic, as demonstrated by contact angle measurements. Principal component analysis (PCA) of ATR-FTIR data showed that intensities at 3195 cm−1 and 3490 cm−1 were correlated to the relative hydrophobicity of zein films. PCA also showed that films of esterified zein and cutin were more hydrophobic than their counterparts (non-modified zein without cutin). Optical and scanning electron microscopy demonstrated that esterified zein was compatible with cutin and yielded cohesive films, which did not fracture upon bending.  相似文献   
8.
激光测厚具有安全可靠、测量精度高、测量范围大等优点,广泛应用于纸张、电池极片等薄膜类材料厚度的在线测量。带材宽幅方向扫描测厚时由于扫描架往复运动会产生机械振动,影响在线测厚精度。针对该问题,以锂离子电池极片厚度测量为例,使用双激光差动式测厚平台对电池极片和铜箔分别进行厚度测量,然后对测厚数据进行频谱分析,探究其振动规律的相似性,并基于频谱分析结果采用滑动带阻滤波方式对测厚数据进行处理,滤波后极片和铜箔的厚度极差分别降低了33.4%和73.8%,有效过滤了机械振动导致的测量误差,可满足极片和铜箔厚度测量的精度要求。  相似文献   
9.
A novel method for fabricating a nano-Cu/Si3N4 ceramic substrate is proposed. The nano-Cu/Si3N4 ceramic substrate is first fabricated using spark plasma sintering (SPS) with the addition of nanoscale multilayer films (Ti/TiN/Ti/TiN/Ti) as transition layers. The microstructures of the nano-Cu metal layer and the interface between Cu and Si3N4 are investigated. The results show that a higher SPS temperature increases the grain size of the nano-Cu metal layer and affects the hardness. The microstructure of the transition layer evolves significantly after SPS. Ti in the transition layer can react with Si3N4 and with nano-Cu to form interfacial reaction layers of TiN and Ti–Cu, respectively; these ensure stronger bonding between nano-Cu and Si3N4. Higher SPS temperatures improve the diffusion ability of Ti and Cu, inducing the formation of Ti3Cu3O compounds in the nano-Cu metal layer and Ti2Cu in the transition layer. This study provides an important strategy for designing and constructing a new type of ceramic substrate.  相似文献   
10.
曾敏  王华  邹均名  李文斌 《中国造纸》2022,41(4):102-106
本文从内表面防结露、夏季隔热2个角度出发,对夏热冬冷及夏热冬暖地区代表城市采用的钢结构屋面的保温(隔热)层厚度进行计算分析。研究表明,在夏季室内温、湿度达到某一状态时,隔热厚度要大于冬季防结露的保温厚度。因此,夏热冬冷地区的造纸车间钢屋面保温层厚度应按夏季隔热计算确定,并进行冬季防结露验算;夏热冬暖地区按照冬季防结露计算即可。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号