首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15187篇
  免费   1229篇
  国内免费   487篇
电工技术   313篇
综合类   930篇
化学工业   1834篇
金属工艺   3714篇
机械仪表   1378篇
建筑科学   731篇
矿业工程   287篇
能源动力   217篇
轻工业   905篇
水利工程   146篇
石油天然气   768篇
武器工业   132篇
无线电   1004篇
一般工业技术   2116篇
冶金工业   1051篇
原子能技术   100篇
自动化技术   1277篇
  2024年   24篇
  2023年   209篇
  2022年   238篇
  2021年   380篇
  2020年   385篇
  2019年   282篇
  2018年   316篇
  2017年   432篇
  2016年   410篇
  2015年   459篇
  2014年   834篇
  2013年   754篇
  2012年   843篇
  2011年   1007篇
  2010年   883篇
  2009年   916篇
  2008年   800篇
  2007年   1010篇
  2006年   1052篇
  2005年   842篇
  2004年   829篇
  2003年   715篇
  2002年   641篇
  2001年   506篇
  2000年   410篇
  1999年   287篇
  1998年   211篇
  1997年   169篇
  1996年   206篇
  1995年   138篇
  1994年   128篇
  1993年   77篇
  1992年   64篇
  1991年   51篇
  1990年   46篇
  1989年   41篇
  1988年   36篇
  1987年   37篇
  1986年   35篇
  1985年   19篇
  1984年   34篇
  1983年   19篇
  1982年   25篇
  1981年   9篇
  1979年   13篇
  1978年   6篇
  1976年   6篇
  1966年   7篇
  1956年   6篇
  1955年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
为指导实际双金属管精确成形工艺,基于LS-Dyna对铝/钢双金属管电磁缩径连接进行了结构场-电磁场耦合的有限元数值模拟,研究了内外管壁厚比值、内外管间隙、放电电压以及芯模对成形质量的影响规律.结果表明:内外管壁厚比值过小易引起内外管连接不紧密,比值过大易导致内管凹陷和外管开裂;随着放电电压增大或内外管间距的减小,外管缩径冲击力增大,导致内管周向应力的急剧增大和失稳起皱,同时造成外管开裂;而随着放电电压减小或内外管间距的增大,外管相对的缩径冲击力减小,内管会因无法经历一个有效的形变回弹过程导致内外管有效连接区域逐渐减小;采用弹性芯模可一定程度抑制开裂等宏观缺陷的产生,同时也能适当增加内管的回弹.最后,基于理论计算与有限元仿真获得复合管电磁成形规律和缺陷控制理论,以增大有效连接区域长度、减少宏观缺陷为目标进行优化,在施加弹性芯模的状态下,内管壁厚维持1 mm不变,外管壁厚取1.5 mm,内外管间隙取0.7 mm,放电电压取50 kV时得到的成形质量最佳.  相似文献   
2.
To enhance chemical stability and suppress of aggregation of magnetite nanoparticles (MNPs), which are used as a support for thermoresponsive copolymer immobilization, silica coating of the MNPs is applied via the electrooxidation method. Although the resulting silica coated-MNPs also formed aggregates, the size distribution of the aggregate shifted to smaller size range. Because of that, the surface area available for copolymer immobilization increased approximately 6.7 times at maximum as compared with that of the uncoated MNPs. It contributed to the increase of the amount of the immobilized copolymer on the silica-coated MNPs, which is approximately four times larger than that on the uncoated MNPs. Fe3O4 dissolution test confirmed enhancement of chemical stability of MNPs. The thermoresponsive copolymer immobilized on the silica-coated MNPs shows the ability to recycle Cu(II) ion from Cu(II) containing solution by changing temperature with significantly shorter time than those in other thermoresponsive adsorbents in gel form.  相似文献   
3.
针对深度确定性策略梯度算法(DDPG)收敛速度比较慢,训练不稳定,方差过大,样本应用效率低的问题,提出了一种基于随机方差减小梯度方法的深度确定性策略梯度算法(SVR-DDPG)。该算法通过利用随机方差减小梯度技术(SVRG)提出一种新的创新优化策略,将之运用到DDPG算法之中,在DDPG算法的参数更新过程中,加入了随机方差减小梯度技术,利用该方法的更新方式,使得估计的梯度方差有一个不断减小的上界,令方差不断缩小,从而在小的随机训练子集的基础上找到更加精确的梯度方向,以此来解决了由近似梯度估计误差引发的问题,加快了算法的收敛速度。将SVR-DDPG算法以及DDPG算法应用于Pendulum和Mountain Car问题,实验结果表明,SVR-DDPG算法具有比原算法更快的收敛速度,更好的稳定性,以此证明了算法的有效性。  相似文献   
4.
Succinic acid is an important synthetic monomer but it is difficult to use it as a precursor for synthesizing high molecular weight polyamide, due to its tendency to perform intra-cyclization reaction at high temperature. In order to solve this problem, in this paper, the direct solid-state polymerization (DSSP) method with the initial reactant, nylon salt which was composed of 1, 5-diaminopentane, succinic acid, and terephthalic acid, was applied to synthesize the bio-based copolyamide PA 5T/54. In comparison with the conventional melting polymerization method, the DSSP method can prevent the cyclization reaction of succinic acid effectively due to the lower reacting temperature as well as the restriction effect of the nylon salt. As a result, the product fabricated by DSSP method has higher molecular weight and much lighter color from red to white. Therefore, the DSSP method is advantageous for the synthesis of the polymers or copolymers composed of the succinic acid as the monomer. Furthermore, the polymerization mechanism proposed in this work can serve as a guidance for the design of the molecular structure and control of the polymerization process.  相似文献   
5.
In this work, Bis-(3-triethoxysilylpropyl) tetrasulphane was employed for surface modification of silica, ferrite and kenaf fiber filled natural rubber composites using aqueous solvent deposition, dry blending and integral blend methods. The efficiency of each method and the preferred modification method for improving the mechanical performance of natural rubber composites was assessed. The appearance of the Fourier transform infrared spectroscopy peak around 1088 cm−1 for all types of fillers provided evidence that silane interaction had occurred between the fillers and rubber and the formation of siloxane linkages were quantitatively determined by the crosslink density measurement. The surface treatment by dry method for silica and ferrite fillers showed significant improvement of tensile performance at approximately 67% and 34% compared to those with untreated fillers. For kenaf fiber-filled rubber composites, the surface treatment by aqueous solvent deposition showed the highest tensile improvement of 59% compared to the dry blending and integral blend method.  相似文献   
6.
Shape memory polyurethanes (SMPUs) have generated great attention because of their unique properties. These properties are result of a particular molecular structure consisting of flexible molecular chains with low glass transition temperatures alternating with hard urethane segments. In this field, bisphenol A (BA) has been used for a long time as chain extender due to the good properties of the obtained SPMU materials. Nevertheless, the high toxicity of this compound has caused a high decrease on its use. For this reason, it has been selected a lower toxicity compound, bisphenol A ethoxylate (BAE). In this work, it is described a new SMPUs based on BAE and the influence of the hard segment on the thermo-mechanical properties and shape memory capacity. For that, both the proportion of the components and the diisocyanate employed (2,4-toluene diisocyanate (TDI), 4,4′-methylene bis(phenylisocyanate) (MDI) or a TDI/MDI mixture) have been modified. Then, depending on the molecular architecture achieved, the polyurethanes present different properties, which were studied by different techniques, such as thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic-mechanical thermal analysis (DMTA). It has been observed that glass transition temperature (Tg) increases as the hard phase content in the PU samples increases. In addition, Tg-MDI > Tg-MDI-TDI > Tg-TDI, so it is possible to control the Tg of the material, that is, shape memory transition temperature varying the diisocyanate. Finally, the shape memory capacity of the PUs was evaluated by thermo-mechanical analysis (TMA). All the synthesized PUs have shown good shape memory effect with fixation ratios up to 80% and recovery ratios close to 100%.  相似文献   
7.
To overcome the plasticization effect in polyimide membranes, many researchers have proposed crosslinking method. This can reduce an inter-segmental mobility by tightening and rigidifying the polymer chains. However, it is difficult to modify the whole polymer chains throughout the membrane because the reaction can be hindered by the diffusion rate of the crosslinker. In particular, it is hard for bulky crosslinker to penetrate a dense membrane with a small d-spacing. This study investigated the effect of crosslinking a dense Matrimid membrane with p-phenylenediamine (p-PDA) via two different crosslinking methods (i.e., methanol-swelling crosslinking process [M-SCP] and liquid-phase crosslinking process [L-PCP]). Most of the crosslinking reaction in M-SCP occurs on the membrane surface due to difficulty in penetration of the bulky p-PDA into the Matrimid dense membrane. In contrast, the L-PCP allows uniform crosslinking across the membrane. The membranes crosslinked using L-PCP showed excellent chemical resistance. Furthermore, the plasticization phenomenon was not observed in the membranes crosslinked using L-PCP with p-PDA more than 15%. Meanwhile, the membrane crosslinked using M-SCP exhibited poor plasticization and chemical resistance properties. These results showed that the L-PCP method can be more effective for the crosslinking of dense membrane to deliver both high plasticization and chemical resistance.  相似文献   
8.
A modular method for functionalization of nonwoven fabrics was developed using a two-step process. In the first step, the fabrics were grafted with a linker molecule, 10-undecenoyl chloride, via esterification, followed by attachment of a functional material under UV irradiation. Perfluorodecanethiol and 3-mercaptopropionic acid (MPA) were connected to the linker-modified fabrics using thiol-ene click chemistry. Perfluorodecanethiol modified fabrics exhibited hydrophobicity with water contact angle of about 140° while MPA-modified fabrics were able to lower the pH of a solution by about 1.6. We additionally demonstrated the possibility to connect functional polymers to the linker-modified fabrics by radical graft polymerization of acrylic acid; this produced a thin layer of the polymer on the surface of the fabric. Fabrics modified with poly(acrylic acid) exhibited increased hydrophilicity with water contact angle of 0° for both cotton and viscose-polyester fabrics, while the water absorption capability for polypropylene fabrics increased from about 50 to 1200%.  相似文献   
9.
Thermoresponsive PEG-based (PEG stands polyethylene glycol) polymers are unique for use in medicine because of their low toxicity, good biocompatibility and biodegradability, but usually more hydrophobic and more toxic comonomers are used to adjust lower critical solution temperature (LCST). A convenient way to overcome this problem and to finely tune LCST is to use alkoxy oligo(ethylene glycol)- or alkoxy oligo(propylene glycol) (meth)acrylates as starting comonomers. Here we report on the conditions for the simple and affordable synthesis of methoxy oligo(propylene glycol) (meth)acrylate- and methoxy oligo(propylene glycol)-block-oligo(ethylene glycol) (meth)acrylate-based macromonomers with high yields (80%–98.7%) by the acid-catalyzed esterification of (meth)acrylic acid with alkoxy oligo(alkylene glycols) containing oligo(ethylene glycol) (OEG) and/or oligo(propylene glycol) (OPG) blocks. p-Toluene sulphonic acid (pTSA), alkyl(C12–C14)benzene sulfonic acid (ABSA) and H2SO4 were used as catalysts. It has been shown that pTSA and ABSA are practically the same in catalytic activity and are superior to sulfuric acid. The reaction orders with respect to catalyst was found to be close to 1 in all cases. It has been shown that the reaction is actually insensitive to the lengths of OEG and OPG blocks, as well as to the structure of the terminal alkyl group, while the esterification of acrylic acid (AA) proceeds much faster compared to methacrylic acid (MAA) one under the same conditions. The influence of temperature on the equilibrium conversions of alcohols was determined, which were found to be 89%–93% for the esterification of AA and 61%–86% for MAA in the temperature range of 60–120°C. A further increase in conversion was achieved by introducing an azeotropic agent (toluene), its optimal concentration was found to be 10%–15%.  相似文献   
10.
我公司使用的硫化机采用氮气定型,二次水硫化的工艺。由于特种工程胎胎体偏厚且大,成型机都比较大,生产过程中的帘布筒、钢丝、胎侧等部件都比较重且大。成型胎面使用胎面缠绕机缠绕,所以整个生产过程难度较大。特种工程胎硫化外胎的主要质量问题有:胎面皮泡、胎侧缺胶、胎侧泡、胎肩侧皮泡、子口内侧露线、子口缺胶、胎肚内缺(窝气)、胎肚露线、胎肚皮泡、胎肚串泡、子口支边、胎冠支边、子口鼓包、外胎花缺等。通过对特种工程胎硫化外胎质量缺陷原因分析,找到相应的解决措施,从而减少硫化外胎质量缺陷。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号