首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219276篇
  免费   28469篇
  国内免费   24041篇
电工技术   21331篇
技术理论   8篇
综合类   16076篇
化学工业   42369篇
金属工艺   9102篇
机械仪表   14766篇
建筑科学   13975篇
矿业工程   3725篇
能源动力   8593篇
轻工业   16614篇
水利工程   3096篇
石油天然气   5287篇
武器工业   2537篇
无线电   29844篇
一般工业技术   25136篇
冶金工业   5927篇
原子能技术   3544篇
自动化技术   49856篇
  2024年   503篇
  2023年   3320篇
  2022年   5677篇
  2021年   7666篇
  2020年   7535篇
  2019年   6668篇
  2018年   6204篇
  2017年   8520篇
  2016年   9291篇
  2015年   10770篇
  2014年   11479篇
  2013年   14643篇
  2012年   16884篇
  2011年   18878篇
  2010年   13615篇
  2009年   13560篇
  2008年   14480篇
  2007年   16565篇
  2006年   15799篇
  2005年   13497篇
  2004年   11424篇
  2003年   9130篇
  2002年   7162篇
  2001年   5297篇
  2000年   4179篇
  1999年   3427篇
  1998年   2784篇
  1997年   2215篇
  1996年   1877篇
  1995年   1637篇
  1994年   1458篇
  1993年   1061篇
  1992年   856篇
  1991年   706篇
  1990年   572篇
  1989年   434篇
  1988年   332篇
  1987年   199篇
  1986年   186篇
  1985年   252篇
  1984年   229篇
  1983年   171篇
  1982年   219篇
  1981年   101篇
  1980年   104篇
  1979年   27篇
  1978年   17篇
  1977年   24篇
  1976年   16篇
  1959年   24篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Through a facile hydrothermal method, we have successfully prepared Ti3C2/Bi2.15WO6 (TC/BWO) composite, and systematically investigated their reactivity for the photocatalytic reduction of Cr(VI) under visible light. X-ray diffraction and Raman analysis confirm the formation of heterostructure between Bi2.15WO6 and Ti3C2. The resultant 7TC/BWO composite exhibits enhanced photoactivity toward Cr(VI) reduction. After 120 min irradiation, the conversion of Cr(VI) reaches 92.5% with the quasi-first-order kinetic constant of k = 0.0145 min?1, which is higher than that of pure BWO (30% and k = 0.0005 min?1). The electrochemical and photoluminescent characterization confirm that the introduction of Ti3C2 is conducive to the separation of carriers, thus significantly improves the photocatalytic performance of TC/BWO. Furthermore, the radical capture experiments verify that the electrons are important for enhancing reduction of Cr(VI) to Cr(III). As a result, this research provides a comprehensive understanding of the reduction of Cr(VI) by TC/BWO composite under visible light.  相似文献   
2.
The fuel cell/battery durability and hybrid system stability are major considerations for the power management of fuel cell hybrid electric bus (FCHEB) operating on complicated driving conditions. In this paper, a real time nonlinear adaptive control (NAC) with stability analyze is formulated for power management of FCHEB. Firstly, the mathematical model of hybrid power system is analyzed, which is established for control-oriented design. Furthermore, the NAC-based strategy with quadratic Lyapunov function is set up to guarantee the stability of closed-loop power system, and the power split between fuel cell and battery is controlled with the durability consideration. Finally, two real-time power management strategies, state machine control (SMC) and fuzzy logic control (FLC), are implemented to evaluate the performance of NAC-based strategy, and the simulation results suggest that the guaranteed stability of NAC-based strategy can efficiently prolong fuel cell/battery lifespan and provide better fuel consumption economy for FCHEB.  相似文献   
3.
Highly-efficient and stable non-noble metal electrocatalysts for overcoming the sluggish kinetics of oxygen evolution reaction (OER) is urgent for water electrolysis. Biomass-derived biochar has been considered as promising carbon material because of its advantages such as low-cost, renewable, simple preparation, rich structure, and easy to obtain heteroatom by in-situ doping. Herein, Ni2P–Fe2P bimetallic phosphide spherical nanocages encapsulated in N/P-doped pine needles biochar is prepared via a simple two-step pyrolysis method. Benefiting from the maximum synergistic effects of bimetallic phosphide and biochar, high conductivity of biochar encapsulation, highly exposed active sites of Ni2P–Fe2P spherical nanocages, rapid mass transfer in porous channels with large specific surface area, and the promotion in adsorption of reaction intermediates by high-level heteroatom doping, the (Ni0.75Fe0.25)2P@NP/C demonstrates excellent OER activity with an overpotential of 250 mV and a Tafel slope of 48 mV/dec at 10 mA/cm2 in 1 M KOH. Also it exhibits a long-term durability in 10 h electrolysis and its activity even improves during the electrocatalytic process. The present work provides a favorable strategy for the inexpensive synthesis of biochar-based transition metal electrocatalysts toward OER, and improves the water electrolysis for hydrogen production.  相似文献   
4.
5.
This work describes facile synthesis of a porous polymeric material ( T-HCP ) using readily available reagents. Specifically, T-HCP is a thermally stable and hypercrosslinked polymer (HCP) that is essentially microporous with a high BET specific surface area (940 m2 g?1). Triptycene based polymers are known to feature internal free volume. Thus, the incorporation of triptycene units and extensive crosslinking by an external cross-linker in T-HCP makes it a promising adsorbent for small gas capture applications. Experimental results show that T-HCP demonstrated good CO2 capture capacity of 132 mg g?1 (273 K, 1 bar). Molecular hydrogen storage capacity of T-HCP is estimated to be 17.7 mg g?1 (77 K, 1 bar). T-HCP revealed high CO2/N2 selectivity (up to 63) as well as promising CO2/CH4 (up to 9.1) selectivity suggesting its potential applicability for CO2 separation from flue and natural gases.  相似文献   
6.
建立高效液相色谱法测定化妆品中依克多因的分析方法,采用Agilent Poroshell 120 EC-C18色谱柱(100 mm×3.0 mm,2.7μm)分离,以甲醇和p H为3.0的40 mmol/L磷酸二氢钠-10 mmol/L 1-庚烷磺酸钠缓冲溶液梯度洗脱,流速0.8 m L/min,柱温30℃,检测波长210 nm。采用外标法定量测定化妆品中的依克多因含量。结果表明,依克多因在5~800 mg/L的质量浓度范围内呈现良好线性关系,相关系数为0.999 8,方法的检出限和定量限分别为0.3和1.0 mg/L。该方法具有分离效率高、分析时间短、节省溶剂等优点,解决了依克多因在C18色谱柱上保留弱的问题。  相似文献   
7.
《Ceramics International》2022,48(3):3362-3367
The influence of high-energy ball milling on structural, microstructural, and optical properties of TiO2 by modifying the nanoparticle size was studied. Five samples were extracted at different milling times (0, 2, 4, 8, and 13 h). The average particle sizes estimated by dynamic light scattering (DLS) were 205, 155.8, 116.8, 82.9, and 82.7 nm at 0, 2, 4, 8, and 13 h, respectively. X-ray diffraction analysis confirmed progressive broadening of the peaks as the milling time elapsed. Besides, a correlation was found between d spacing and the average crystal size. The UV–Vis diffuse reflectance spectra of TiO2 revealed a decrease in reflectance due to particle size reduction. Similarly, an alteration of the bandgap transition energy was presented, whose values gradually decreased from 2.966 eV to 2.861 eV for the sample without and with the maximum duration milling performed (13 h), respectively. Likewise, the SEM analysis showed a distribution in nanoparticle size that became more homogeneous and smaller average grain size as the milling duration was longer.  相似文献   
8.
In order to reveal the mechanism of water fog explosion suppression and research the combined effect of water fog and obstacle on hydrogen/air deflagration, multiple sets of experiments were set up. The results show that the instability of thermal diffusion under lean combustion conditions is the main influencing factor of hydrogen/air flame surface instability, and the existence of water fog will aggravate the hydrogen/air flame surface instability. When obstacle is not considered, 8 μm, 15 μm, 30 μm water fog can significantly reduce the flame velocity and explosion overpressure of hydrogen/air, 45 μm fine water fog plays the opposite role. When considering the relative position of the water fog release position and the obstacle, the 8 μm, 15 μm, 30 μm water fog has almost no suppression effect when released near the obstacle, but a significant suppression effect occur, when using the 45 μm water fog. In the field of theoretical research, the research results not only provide an experimental basis for the fine water fog to reduce the consequences of hydrogen explosion accidents, and the optimal diameter range used by the water fog, but also provide experimental reference for the numerical simulation of hydrogen/air explosion suppression in semi-open space, and promote the development of hydrogen explosion suppression theory. In terms of engineering applications, this study can provide a theoretical basis for the layout of fire fighting equipment in the engine room of nuclear power plants or hydrogen-powered ships.  相似文献   
9.
《Ceramics International》2022,48(21):31695-31704
In this study, ceramic membranes made of montmorillonite, perlite and iron were used to remove As(III) from water. Membranes prepared with 0.0, 0.5, 1.0, and 1.5 wt% of iron content were used to filtrate As(III) synthetic water and surface water solutions. As(III) adsorption capacity and removal efficiency, and other parameters such as cations and anions content, turbidity, pH, electrical conductivity were used to evaluate the membranes' performance. Results show that the As(III) adsorption/removal capacity of membranes was improved by the addition of iron. Adsorption capacity of 7.5 μg As(III)/g and removal efficiency of 97% can be achieved in membranes with 1.0 wt% of iron filings content for surface water; however, a greater amount of iron in the membrane structure limits the adsorption capacity of As(III). Besides the capacity of ceramic membranes to adsorb/remove As(III), membranes were also effective to remove other ions, turbidity, and electrical conductivity from the surface water. The addition of iron to the ceramic membranes enhanced their capacity to remove such surface water constituents. These results are important from the practical viewpoint showing the potential of ceramic membranes for the removal of metalloids and other water constituents. Langmuir isotherm model best described the adsorption process in ceramic membranes, suggesting that adsorption of As(III) happened on a monolayered surface of the ceramic membrane.  相似文献   
10.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号