首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46884篇
  免费   5380篇
  国内免费   3688篇
电工技术   1527篇
技术理论   8篇
综合类   3581篇
化学工业   10011篇
金属工艺   4812篇
机械仪表   1197篇
建筑科学   4485篇
矿业工程   1083篇
能源动力   5036篇
轻工业   1813篇
水利工程   945篇
石油天然气   3353篇
武器工业   276篇
无线电   2023篇
一般工业技术   6229篇
冶金工业   4223篇
原子能技术   686篇
自动化技术   4664篇
  2024年   121篇
  2023年   1549篇
  2022年   2247篇
  2021年   2404篇
  2020年   2385篇
  2019年   2137篇
  2018年   1819篇
  2017年   1983篇
  2016年   1858篇
  2015年   1849篇
  2014年   2529篇
  2013年   2853篇
  2012年   3048篇
  2011年   3455篇
  2010年   2617篇
  2009年   2593篇
  2008年   2327篇
  2007年   2635篇
  2006年   2373篇
  2005年   2119篇
  2004年   1826篇
  2003年   1588篇
  2002年   1397篇
  2001年   1088篇
  2000年   784篇
  1999年   663篇
  1998年   500篇
  1997年   414篇
  1996年   386篇
  1995年   311篇
  1994年   302篇
  1993年   204篇
  1992年   161篇
  1991年   135篇
  1990年   160篇
  1989年   109篇
  1988年   86篇
  1987年   68篇
  1986年   71篇
  1985年   46篇
  1984年   62篇
  1981年   30篇
  1980年   33篇
  1979年   34篇
  1965年   31篇
  1964年   49篇
  1963年   39篇
  1959年   33篇
  1958年   30篇
  1955年   46篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
The combination of inorganic (e.g., ferrite nanoparticles) and organic (e.g., conducting polymers) materials in the fabrication of heterojunctions or composites is an attractive scheme in the field of photocatalysis. We took the advantage of this phenomenon by fabricating MFerrite (M = Co, Ni, and Zn) @polypyrrole (MFerrite@Ppy) nanocomposites with a varying weight percentage of Ppy for the hydrogen production through photocatalytic water splitting under visible light irradiation. The structural, spectral, morphological, compositional, and optical features of the as-prepared nanocomposites were analyzed in full depth. The average crystallite sizes were estimated to be 30–40 nm from the XRD patterns which were further validated by TEM images from which a core-shell structure of the composites can be inferred. Likewise, the SEM images revealed spherical Ppy particles with a diameter in the range of 100–300 nm. From a photocatalytic viewpoint, CoFerrite@30Ppy is endowed with some peculiar characteristics including but not limited to strong light-harvesting ability (ranging between 300 and 650 nm), narrow optical band gap (as low as 1.6 eV), and higher photoluminescence (PL) lifetime (6.41 ns) which justify why it stands out among all composites in terms of photocatalysis. Under 8 h illumination of simulated visible light and using triethanolamine (TEOA) as a hole scavenger and Eosin-Y (EY) as a dye sensitizer, the photocatalytic hydrogen evolution (HER) amount for CoFerrite@30Ppy was found to be 10.44 mmol g?1, far greater than any other composite catalysts in this study. From the PL spectra, it can be pointed out that sensitization of CoFerrite with 30 wt % Ppy conduces to simultaneous deceleration of the electron-hole recombination process and acceleration of the transference of excitons within the system.  相似文献   
2.
Natural hydrogen exploration is now active in various places of the world. Onshore, correlation between natural H2 generation and the presence of iron rich rocks especially from Archean and Neoproterozoic cratons have been observed. Emanations and accumulations of H2 have already been confirmed in such geological settings in Australia, South Africa and Brazil. The geological similitude and the presence of numerous sub circular depressions that are a good proxy for hydrogen emanations suggest that hydrogen resources may also exist in Namibia. We present here the results of a data acquisition campaign which allowed us to confirm the presence of natural hydrogen in this country in the vicinity of Neoproterozoic Banded Iron Formation. The H2 content in the soil, as in Brazil, is variable within the depressions in time and space and is particularly time sensitive across the day. Comparison of the H2 signal versus time within these two regions shows a similar behavior of the soils with an increase of the H2 flow at the middle of the day. In addition, these new data allow us to better constrain the morphological characteristics of such H2-emiting depressions. By using satellite images and digital elevation model we propose a new proxy to differentiate potentially H2-emiting features from other type of depressions such as Salt Pan. The Landsat multispectral images and their processing through NDVI and SAVI indexes, that highlight a ring of healthy vegetation around the sub circular area with scarce vegetation already observed appear able to discriminate between H2 emitting structures and other soft depressions.  相似文献   
3.
The development of cost-effective bifunctional catalysts with excellent performance and good stability is of great significance for overall water splitting. In this work, NiFe layered double hydroxides (LDHs) nanosheets are prepared on nickel foam by hydrothermal method, and then Ni2P(O)–Fe2P(O)/CeOx nanosheets are in situ synthesized by electrodeposition and phosphating on NiFe LDHs. The obtained self-supporting Ni2P(O)–Fe2P(O)/CeOx exhibit excellent catalytic performances in alkaline solution due to more active sites and fast electron transport. When the current density is 10 mA cm?2, the overpotential of hydrogen evolution reaction and oxygen evolution reaction are 75 mV and 268 mV, respectively. In addition, driven by two Ni2P(O)–Fe2P(O)/CeOx electrodes, the alkaline battery can reach 1.45 V at 10 mA cm?2.  相似文献   
4.
Electrolysis of water for producing hydrogen instead of traditional fossil fuels is one of the most promising methods to alleviate environmental pollution and energy crisis. In this work, Fe and F ion co-doped Ni3S2 nanoarrays grown on Ni foam substrate were prepared by typical hydrothermal and sulfuration processes for the first time. Density functional theory (DFT) calculation demonstrate that the adsorption energy of the material to water is greatly enhanced due to the doping of F and Fe, which is conducive to the formation of intermediate species and the improvement of electrochemical performance of the electrode. The adsorption energy of anions (F and S) and cations (Fe and Ni) to water in each material was also calculated, and the results showed that F ion showed the most optimal adsorption energy of water, which proved that the doping of F and Fe was beneficial to improve the electrochemical performance of the electrode. It is worth noting that the surface of Fe–F–Ni3S2 material will undergo reconstruction during the process of water oxidation reaction and urea oxidation reaction, and amorphous oxides or hydroxides in situ would be formed on the surface of electrode, which are the real active species.  相似文献   
5.
It is extremely desirable to develop high hydrogen evolution activity and stable visible-light-driven photocatalysts. The sluggish oxidation process and holes accumulation are the main obstacles to high catalysis activity and photo-stability. An efficient γ-NiOOH/ZnCdS photocatalyst was prepared by in-situ hydrothermal method. The γ-NiOOH nanosheets distribute on ZnCdS nanospheres surface and accelerate holes transfer. The hydrogen evolution rate is up to 48.60 mmol g?1 h?1 under visible-light illumination (λ = 400–780 nm), about 10.8 times of pure ZnCdS (4.50 mmol g?1 h?1) and 1.8 times of general β-NiOOH modified ZnCdS (27.40 mmol g?1 h?1). And apparent quantum yield of γ-NiOOH/ZCS-100 is up to 18.23% (400 nm). The carrier lifetime extends from 5.50 ns (ZnCdS) to 6.10 ns (γ-NiOOH/ZCS), examined by steady photoluminescence and time-resolved photoluminescence. Moreover, the γ-NiOOH/ZCS photocatalyst has exhibited excellent photo-stability even after one-year of storage. The γ-NiOOH nanosheets can be an excellent co-catalyst on accelerating both holes transfer and oxidation process for high photo-stability and photo-activity.  相似文献   
6.
Highly-efficient and stable non-noble metal electrocatalysts for overcoming the sluggish kinetics of oxygen evolution reaction (OER) is urgent for water electrolysis. Biomass-derived biochar has been considered as promising carbon material because of its advantages such as low-cost, renewable, simple preparation, rich structure, and easy to obtain heteroatom by in-situ doping. Herein, Ni2P–Fe2P bimetallic phosphide spherical nanocages encapsulated in N/P-doped pine needles biochar is prepared via a simple two-step pyrolysis method. Benefiting from the maximum synergistic effects of bimetallic phosphide and biochar, high conductivity of biochar encapsulation, highly exposed active sites of Ni2P–Fe2P spherical nanocages, rapid mass transfer in porous channels with large specific surface area, and the promotion in adsorption of reaction intermediates by high-level heteroatom doping, the (Ni0.75Fe0.25)2P@NP/C demonstrates excellent OER activity with an overpotential of 250 mV and a Tafel slope of 48 mV/dec at 10 mA/cm2 in 1 M KOH. Also it exhibits a long-term durability in 10 h electrolysis and its activity even improves during the electrocatalytic process. The present work provides a favorable strategy for the inexpensive synthesis of biochar-based transition metal electrocatalysts toward OER, and improves the water electrolysis for hydrogen production.  相似文献   
7.
《Soils and Foundations》2022,62(1):101103
The present study proposes a new elasto-plastic constitutive model that considers different types of hydrates in pore spaces. Many triaxial compression tests on both methane hydrate-bearing soils and carbon dioxide hydrate-bearing soils have been carried out over the last few decades. It has been revealed that methane hydrate-bearing soils and carbon dioxide hydrate-bearing soils have different strength and dilatancy properties even though they have the same hydrate contents. The reason for this might be due to the different types of hydrate morphology. In this study, therefore, the effect of the hydrate morphology on the mechanical response of gas-hydrate-bearing sediments is investigated through a model analysis by taking into account the different hardening rules corresponding to each type of hydrate morphology. In order to evaluate the capability of the proposed model, it is applied to the results of past triaxial compression tests on both methane hydrate-containing and carbon dioxide hydrate-containing sand specimens. The model is found to successfully reproduce the different stress–strain relations and dilatancy behaviors, by only giving consideration to the different morphology distributions and not changing the fitting parameters. The model is then used to predict a possible range in which the maximum deviator stress can move for various hydrate morphology ratios; the range is defined as the strength-band. The predicted curve of the maximum deviator stress obtained by the constitutive model matches the empirical equations obtained from past experiments. It supports the fact that the hydrate morphology ratio changes with the total hydrate saturation. These findings will contribute to a better understanding of the relation between the microscopic structures and macro-mechanical behaviors of gas-hydrate-bearing sediments.  相似文献   
8.
RE disilicates are good candidates as environmental/thermal barrier coating for SiCf/SiC composite in harsh gas turbine engines. We designed (Yb1?xHox)2Si2O7 solid solutions and studied mechanical properties, thermal properties, and water vapor resistance. Powders with different compositions were synthesized by pressureless sintering, and bulk samples were prepared by Spark Plasma Sintering (SPS). Polymorphic changes with temperature and composition of the solid solutions were examined. Through doping Ho into Yb2Si2O7, water vapor corrosion resistance is significantly promoted, and thermal expansion coefficient is maintained close to that of Si-based ceramics. Compared with host disilicates, thermal conductivity of solid solutions are decreased, and mechanical properties, including Vickers hardness and fracture toughness, are increased. A two-phase domain is found at (Yb1/2Ho1/2)2Si2O7, and the γ to δ phase transition of Ho2Si2O7 is observed during SPS. Among all samples, γ-(Yb1/3Ho2/3)2Si2O7 possesses superior high temperature stability, and excellent water vapor resistance, indicating its performance as environmental/thermal barrier coating.  相似文献   
9.
《Ceramics International》2022,48(5):6266-6276
Porous diatomite ceramics with hierarchical pores and high apparent porosity (50.29–56%) were successfully fabricated via direct stereolithography. The pre-ball-milling time, dispersant type and dispersant concentration were systematically investigated to prepare diatomite pastes with high solid loading, low viscosity and a self-supporting effect. The results showed that a pre-ball-milling time of 24 h was more suitable to prepare diatomite pastes with high solid loading, and Span80 at 2 wt% was the optimal dispersant to obtain 40 vol% diatomite paste with a low viscosity and a self-supporting effect. To restrain the formation of defects, a heating rate as low as 0.2 °C/min was allowed to control the pyrolysis rate in the multistage debinding process. At sintering temperatures ranging from 900 °C to 1000 °C, porous diatomite ceramics exhibited a typical bimodal porosity, high apparent porosity and great flexural strength.  相似文献   
10.
《Ceramics International》2022,48(21):31738-31745
In this study, novel polyborosilazane-derived SiBCN(O) ceramic was used as self-healing component in self-healing Cf/SiBCN(O) composite, which was prepared by polymer infiltration and pyrolysis (PIP) process. Molecular-level structure design of boron-containing ceramic precursors was utilized to achieve uniform dispersion of boron-containing self-healing components in prepared composites. No elemental diffusion was observed at the interface of ceramic matrix and carbon fibers, which resulted in stable SiBCN(O) structure. In addition, boron was uniformly distributed in Cf/SiBCN(O) composite ceramic matrix, which was beneficial for self-healing of cracks. Cracks and indentations were able to heal at high temperatures in air. The best crack-healing behavior occurred in air atmosphere at 1000 °C, with nearly complete crack healing. This excellent self-healing behavior was achieved because silicon and boron atoms in SiBCN(O) ceramic reacted with available oxygen at high temperatures to form SiO2(l), B2O3(l), and B2O3·xSiO2 liquid phases, which effectively filled cracks. In general, as-prepared Cf/SiBCN(O) composite exhibited excellent self-healing properties and shows great application potential in high-temperature environment applications such as aviation, aerospace, and nuclear power.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号