首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350511篇
  免费   38653篇
  国内免费   22903篇
电工技术   27733篇
技术理论   8篇
综合类   39872篇
化学工业   36861篇
金属工艺   22300篇
机械仪表   30068篇
建筑科学   44205篇
矿业工程   16803篇
能源动力   14464篇
轻工业   15922篇
水利工程   16412篇
石油天然气   18083篇
武器工业   6999篇
无线电   25412篇
一般工业技术   38560篇
冶金工业   13433篇
原子能技术   5459篇
自动化技术   39473篇
  2024年   610篇
  2023年   4231篇
  2022年   8493篇
  2021年   10380篇
  2020年   11116篇
  2019年   9296篇
  2018年   8943篇
  2017年   11634篇
  2016年   13491篇
  2015年   14214篇
  2014年   22167篇
  2013年   21537篇
  2012年   27462篇
  2011年   28660篇
  2010年   21685篇
  2009年   21774篇
  2008年   20155篇
  2007年   24948篇
  2006年   22006篇
  2005年   18389篇
  2004年   15374篇
  2003年   12875篇
  2002年   10676篇
  2001年   8986篇
  2000年   7551篇
  1999年   6210篇
  1998年   4961篇
  1997年   4182篇
  1996年   3747篇
  1995年   3286篇
  1994年   2749篇
  1993年   1976篇
  1992年   1758篇
  1991年   1264篇
  1990年   1122篇
  1989年   994篇
  1988年   667篇
  1987年   415篇
  1986年   367篇
  1985年   207篇
  1984年   218篇
  1983年   117篇
  1982年   132篇
  1981年   110篇
  1980年   136篇
  1979年   124篇
  1964年   48篇
  1959年   95篇
  1955年   45篇
  1951年   37篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
1.
深凹露天矿山由于其特殊的结构,爆破产生的炮烟扩散稀释较为困难,严重危害生产作业人员的生命安全与健康。基于实际矿山构建了深凹露天矿山的二维物理及数学模型,采用非稳态数值分析方法研究了不同爆破位置下,深凹露天矿山采坑内爆破炮烟的扩散规律。研究结果表明:不同爆破位置下,露天采坑内均出现复环流,爆破点位置是影响露天采坑内风流结构特征的重要因素;露天采坑内的炮烟最高浓度均随着时间变化而逐渐下降,但下降的速率逐步减小,呈现三个阶段的下降趋势;爆破位置位于背风侧时露天采坑内的炮烟最高浓度和降至安全浓度所需时间远高于迎风侧三个爆破位置;随着背风侧爆破点距采坑底部距离的减小,炮烟最高浓度及降至安全浓度所需时间先降低后增加,炮烟最高浓度及降至安全浓度所需时间随着迎风侧爆破位置距采坑底部距离的减小而增加。研究结果对于指导深凹露天矿山企业合理组织爆破后的生产作业和保障作业人员安全具有重要意义。  相似文献   
2.
Powder transport systems are ubiquitous in various industries, where they can encounter single powder flow, two-phase flow with solids carried by gas or liquid, and gas–solid–liquid three-phase flow. System geometry, operating conditions, and particle properties have significant impacts on the flow behavior, making it difficult to achieve good transportation of granular materials. Compared to experimental trials and theoretical studies, the numerical approach provides unparalleled advantages over the investigation and prediction of detailed flow behavior, of which the discrete element method (DEM) can precisely capture complex particle-scale information and attract a plethora of research interests. This is the first study to review recent progress in the DEM and coupled DEM with computational fluid dynamics for extensive powder transport systems, including single-particle, gas–solid/solid–liquid, and gas–solid–liquid flows. Some important aspects (i.e., powder electrification during pneumatic conveying, pipe bend erosion, non-spherical particle transport) that have not been well summarized previously are given special attention, as is the application in some new-rising fields (ocean mining, hydraulic fracturing, and gas/oil production). Studies involving important large-scale computation methods, such as the coarse grained DEM, graphical processing unit-based technique, and periodic boundary condition, are also introduced to provide insight for industrial application. This review study conducts a comprehensive survey of the DEM studies in powder transport systems.  相似文献   
3.
周忠彬  高金霞  袁宝慧 《爆破器材》2022,51(5):20-23,30
针对压制成型的PBX炸药装药,选择CT无损检测、巴西实验和扫描电镜检测等技术,对比研究了室温和加热两种温度下压制成型的炸药装药内部质量、静态力学性能和细观破坏形式。结果表明,加热压制有利于改善炸药装药的内部质量,可避免产生初始损伤,且提高了装药的力学性能。细观尺度上,室温压制成型的装药主要发生界面脱黏破坏,加热压制成型装药的主要破坏形式是穿晶断裂。  相似文献   
4.
系统阐述了基准平面垂直断面法在爆破漏斗试验中测量爆破漏斗体积的基本原理,并将隧道激光断面仪应用于金厂河矿1 750 m水平15#采场底部切割巷道爆破漏斗试验爆破漏斗体积测量中。通过与传统体重法等计算法所得漏斗体积分析比较,结果表明基于隧道激光断面仪与3D Mine软件分析的基准平面垂直断面法实用性强、操作方便、结果直观可靠,达到试验预期目的。  相似文献   
5.
In the present work, the heating performance of a new system combined with a new modified baseboard radiator and fan coil is investigated. Using longitudinal fins with special geometry and also forced airflow at the end of the system causes that at the lower inlet water temperature compared with the conventional models, higher heat output rate be obtained. The heat output rate of the new modified system is obtained by experimental metrology based on the European Standard No. EN-442. Temperature and velocity distribution in the room space is done by simulation of the modified system in the Flovent software. Computational fluid dynamics (CFD) results are validated against experimental results and there is a good agreement between them. Also, the energy consumption of the system during the winter season is calculated in TRANSYS software. Experimental results show that the heat output rate of a new modified heating system with inlet water temperature in the range of 45–55°C is on average 4.17 times higher compared with the conventional model. CFD simulation also showed that the combined system provides good thermal comfort conditions. Energy consumption of the new system reduced about 13% compared with conventional models.  相似文献   
6.
Classical Fourier's theory is well-known in continuum physics and thermal sciences. However, the primary drawback of this law is that it contradicts the principle of causality. To explore the thermal relaxation time characteristic, Cattaneo–Christov's theory is adopted thermally. In this regard, the features of magnetohydrodynamic (MHD) mixed convective flows of Casson fluids over an impermeable irregular sheet are revealed numerically. In addition, the resulting system of partial differential equations is altered via practical transformations into nonlinear ordinary differential equations. An advanced numerical algorithm is developed in this respect to get higher approximations for temperature and velocity fields, as well as their corresponding wall gradients. For validating our numerical code, the current outcomes are compared with the available literature results. Moreover, it is revealed that the velocity field is more prominent in the suction flow situation as compared with the injection flow case. It is also found that the Casson fluid is hastened in the case of lower yield stress. Larger values of thermal relaxation parameters create a lessening trend in the temperature distribution and its related boundary layer breadth.  相似文献   
7.
The development of efficient filters is an essential part of industrial machinery design, specifically to increase the lifespan of a machine. In the filter chamber design considered in this study, the magnetic material is placed along the horizontal surface of the filter chamber. The inside of the filter chamber is layered with a porous material to restrict the outflow of unwanted particles. This study aims to investigate the flow, pressure, and heat distribution in a dilating or contracting filter chamber with two outlets driven by injection through a permeable surface. The proposed model of the fluid dynamics within the filter chamber follows the conservation equations in the form of partial differential equations. The model equations are further reduced to a steady case through Lie's symmetry group of transformation. They are then solved using a multivariate spectral-based quasilinearization method on the Chebyshev–Gauss–Lobatto nodes. Insights and analyses of the thermophysical parameters that drive optimal outflow during the filtration process are provided through the graphs of the numerical solutions of the differential equations. We find, among other results, that expansion of the filter chamber leads to an overall decrease in internal pressure and an increase in heat distribution inside the filter chamber. The results also show that shrinking the filter chamber increases the internal momentum inside the filter, which leads to more outflow of filtrates.  相似文献   
8.
The present article investigates the influence of Joule heating and chemical reaction on magneto Casson nanofluid phenomena in the occurrence of thermal radiation through a porous inclined stretching sheet. Consideration is extended to heat absorption/generation and viscous dissipation. The governing partial differential equations were transformed into nonlinear ordinary differential equations and numerically solved using the Implicit Finite Difference technique. The article analyses the effect of various physical flow parameters on velocity, heat, and mass transfer distributions. For the various involved parameters, the graphical and numerical outcomes are established. The analysis reveals that the enhancement of the radiation parameter increases the temperature and the chemical reaction parameter decreases the concentration profile. The empirical data presented were compared with previously published findings.  相似文献   
9.
《Journal of dairy science》2022,105(6):5471-5492
The detection of reproductive tract disease (RTD) 3 wk postpartum is important because of its effect on subsequent reproductive outcomes. Numerous methods for the diagnosis of RTD are described, some of which are more practical and instantaneous in terms of diagnosis. Two of these methods involve identification of purulent vaginal discharge (PVD) and evidence of ultrasonographic uterine changes indicative of endometritis (UE). The objectives of our retrospective observational study were (1) to assess the association of PVD or UE score at the prebreeding examination (PBE) with the hazard of pregnancy within the subsequent breeding season; (2) to determine the test sensitivity (Se) and specificity (Sp) at the point of sampling of both tests using a Bayesian latent class model; and (3) to determine the effect of varying positivity thresholds on test accuracy. To achieve these objectives, we analyzed an initial data set of 5,049 PBE from 2,460 spring-calved cows in 8 herds between 2014 and 2018. Each PBE was conducted once between 25 and 86 d in milk. At each PBE, vaginal discharge was obtained with a Metricheck device (Simcro) whereas uterine contents were assessed using transrectal ultrasonography. Purulent vaginal discharge was scored on a scale of 0 to 3 depending on discharge character, and UE was scored on a scale of 0 to 4 depending on the presence and consistency of intraluminal fluid. Cows with scores of ≥2 in either test had received treatment. Fertility data were available from 4,756 PBE after data exclusion. The association between PVD or UE score at the PBE and subsequent hazard of pregnancy was analyzed using a Cox proportional hazards model. Cows with a PVD score of 2 or 3 were less likely to conceive than cows with a PVD score 0 [score 2 hazard ratio (HR) = 0.74; 95% confidence interval (CI): 0.59–0.94; score 3 HR = 0.65; 95% CI: 0.51–0.84]. Cows with a UE score of 1, 2, 3, or 4 were less likely to conceive than cows with a UE score of 0 (score 1 HR = 0.82; 95% CI: 0.73–0.93; score 2 HR = 0.79; 95% CI: 0.62–1.00; score 3 HR = 0.43; 95% CI: 0.43–0.90; score 4 HR = 0.39; 95% CI: 0.26–0.58). To determine the Se and Sp of PVD or UE score for diagnosis of RTD at the time of PBE, a Bayesian latent class model was fitted on 2,460 individual cow PBE. Flat priors were used for the Se and Sp of UE, whereas informative priors were used for PVD Se (mode = 65%, 5th percentile = 45%) and Sp (mode = 90%, 5th percentile = 80%) and RTD prevalence (mode = 20%, 5th percentile = 10%). Posterior estimates (median and 95% Bayesian probability intervals; BPI) were obtained using ‘rjags' (R Studio). The optimal test thresholds (PVD and UE score ≥1) were selected by assessing the effect of different thresholds on test estimates and using a misclassification cost analysis. Based on these, median (95% BPI) Se for PVD and UE score ≥1 were 44% (29–60%) and 67% (33–100%), respectively. Median Sp for PVD and UE score ≥1 were 90% (86–93%) and 91% (86–93%), respectively. Higher scores in both tests were associated with impaired fertility, and UE scoring with a threshold of ≥1 had the highest test Se and Sp estimates although test Se was conditional on days in milk when the PBE occurred.  相似文献   
10.
《Ceramics International》2022,48(12):16649-16655
Effective adhesion between AlOx and SiOx is important for protective coatings and high-k films under extreme operating conditions. Here, we study the chemo-mechanical behavior of the AlOx/SiOx interface and its delamination mechanism using all-atom reactive molecular dynamics simulations. The structure of the interface is examined by the formation of bridge oxygen and the distribution of nanopores. The cleavage of ionic bonds during delamination and the resulting adhesion strength of the system are quantified using pull-out simulations. The results reveal the dependence of the nanopores and ionic bond formation on the oxide structure. The ionic bond density at the interface increases as the oxidation of the aluminum surface proceeds, which directly increases the adhesion strength with SiOx. In particular, the global coordination distribution in the homogeneously grown oxide inhibits the formation of nanopores inside the aluminum substrate and contributes to extremely high adhesion strength. This reveals a fundamental relationship between physicochemical parameters and engineering mechanics for hetero-oxide structure design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号