首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   818篇
  免费   75篇
  国内免费   54篇
电工技术   8篇
综合类   36篇
化学工业   208篇
金属工艺   166篇
机械仪表   106篇
建筑科学   30篇
矿业工程   11篇
能源动力   4篇
轻工业   9篇
石油天然气   31篇
武器工业   5篇
无线电   24篇
一般工业技术   252篇
冶金工业   23篇
原子能技术   8篇
自动化技术   26篇
  2024年   2篇
  2023年   23篇
  2022年   19篇
  2021年   27篇
  2020年   34篇
  2019年   28篇
  2018年   27篇
  2017年   36篇
  2016年   16篇
  2015年   31篇
  2014年   30篇
  2013年   56篇
  2012年   61篇
  2011年   51篇
  2010年   43篇
  2009年   50篇
  2008年   40篇
  2007年   40篇
  2006年   50篇
  2005年   37篇
  2004年   32篇
  2003年   29篇
  2002年   30篇
  2001年   26篇
  2000年   15篇
  1999年   11篇
  1998年   20篇
  1997年   10篇
  1996年   6篇
  1995年   11篇
  1994年   5篇
  1993年   5篇
  1992年   9篇
  1991年   14篇
  1990年   15篇
  1989年   3篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有947条查询结果,搜索用时 437 毫秒
1.
《Ceramics International》2022,48(7):9330-9341
This study investigates the effects of densification on the deformation and fracture in fused silica under Vickers indentation by both the finite element analysis (FEA) and experimental tests. A refined elliptical constitutive model was used, which enables us to investigate the effects of the evolution of yield stress under pure shear and elastic properties with densification. The densification distribution was predicted and compared with experiments. The plastic deformation and indentation stress fields were used to analyze the initiation and morphology of various crack types. The formation mechanism of borderline cracks was revealed for the first time. This study reveals that the asymmetry of the densification distribution and elastic-plastic boundary significantly influences the cracking behavior. Under the Vickers indentation, conical cracks have the largest penetration depth. When these cracks emerge from a region far from the impression, they extend with constant radii to form circles on the sample surface. Otherwise, they tend to be initiated at the centers of the indenter-material contact edges before propagating towards the impression corners with increasing radii. Therefore, the borderline cracks consisting of successive partial conical cracks can form at a low load and makes them the first type of crack to appear.  相似文献   
2.
Thermal tempering is an industrial process widely used to make soda lime silica (SLS) glass panels stronger and tougher. During the tempering process, the upper and bottom sides of the glass may experience different cooling rates, and thus, their properties could be different. This study characterized changes in surface composition and subsurface glass network structures as well as indentation and wear resistance properties of the air- and tin-sides of 6-mm-thick SLS window panels faced toward the upper and sliding roller sides during thermal tempering. The results showed that although the chemical and structural differences detected with X-ray photoelectron spectroscopy and specular reflection infrared spectroscopy are subtle, there are large differences in nanoindentation behaviors and mechanochemical wear properties of the SLS glass surface. The findings of this study provide further insights into the performance difference between the air- and tin-sides of the SLS glass panel treated with thermal tempering.  相似文献   
3.
为探究挠性筋结构单晶硅材料的各向异性特性以及KOH腐蚀工艺对其力学性能的影响规律,进行纳米压痕实验,并结合原子力显微镜观察单晶硅表层3个主晶面上压痕裂纹形貌随晶向的变化规律,分析单晶硅材料表层弹性模量、硬度、断裂韧性等机械力学特性参数在(001)、(110)及(111)3个主要晶面上沿各个晶向的变化规律;分析挠性筋结构单晶硅材料(001)晶面的KOH腐蚀工艺对其材料表面机械特性的影响规律.结果表明:挠性筋单晶硅在(001)晶面上弹性模量的各向异性变化幅度明显,硬度及断裂韧性各向异性的变化幅度不大;挠性筋单晶硅在(110)晶面弹性模量和断裂韧性的各向异性变化幅度明显,硬度各向异性变化幅度不大;挠性筋单晶硅在(111)晶面硬度值、弹性模量及断裂韧性参数的变化幅度幅值均较小;确定了单晶硅表层3个晶面裂纹最易扩展的晶向方向,KOH腐蚀工艺使得单晶硅表面质量降低,腐蚀后暴露的表面微裂纹、缺陷等会使得单晶硅(001)晶面表层硬度、断裂韧性降低,从而降低了挠性筋结构的实际断裂强度.  相似文献   
4.
Type 316LN stainless steel (SS) is the principal structural material for the components of sodium cooled fast reactors operating under elevated temperature conditions. In order to assess the degradation in strength of service exposed components using a small specimen testing technique such as automated ball indentation (ABI), it is necessary to carry out prior detailed ABI studies on the virgin material. In this investigation, the tensile behaviour of as-received 316LN SS were investigated at several temperatures in the range 298–973 K using ABI technique. The load-depth of indentation data measured from ABI tests was analyzed using semi-empirical relationships to obtain the tensile properties. The yield stress and the flow curves were determined by correlating ABI results with corresponding uniaxial tensile test results. Trend curve for tensile strength with temperature, as estimated from ABI tests, exhibited a plateau region in the temperature around 823 K, similar to uniaxial tensile tests. The variations of strength coefficient, strain hardening exponent, yield ratio, hardness and uniform ductility with temperature were evaluated from ABI tests. The ABI technique was found to estimate the influence of temperature on tensile properties sensitively.  相似文献   
5.
In this study, Si3N4/Si2N2O composite ceramics prepared by hot pressing were used as an example, and the material fracture morphology and fracture mechanism were analyzed. Based on the formula of fracture toughness measured by an indentation method, a quantitative computation method was proposed to determine the toughened effect of ceramic materials resulting from the crack deflection by the second phase. The grain size and sintering density are increased with the increase of sintering temperature. The toughening effects resulting from the crack deflection is increased, and the main mode of fracture is transformed into the transgranular fracture. The Si2N2O grains can play a role in the toughening process because these grains can hinder the cracks extending along the radial direction. However, when the cracks extend in the axial direction, the toughening effect of Si2N2O grains is not obvious because of the internal stacking faults in the axial direction. The improved indentation method can quantitatively analyze the toughening effect of the second phase of composite ceramics, and the validity of this method are verified by comparing the fracture toughness of Si3N4/Si2N2O and fine grained β- Si3N4 ceramics.  相似文献   
6.
7.
利用数值模拟的方法对极薄、超宽规格装甲板淬火过程的畸变进行了模拟研究,并对脉冲式压力淬火的控制参数进行了优化。通过对比不同冷却条件装甲板的变形量,确定了脉冲式压力淬火的脉冲压力和周期。结果表明,脉冲约束的模拟条件下,装甲板在厚度Z方向上的最终变形量为1.7 mm,不仅小于2 mm的标准要求,而且可以实现装甲板的小淬火畸变前提下满足其表面无压痕、划痕等其他损伤的实际生产需求。  相似文献   
8.
9.
Developing less brittle oxide glasses is a grand challenge in the field of glass science and technology, as it would pave the way toward new glass applications and limit the overall raw material usage and energy consumption. However, in order to achieve this goal, more insight into the correlation between the chemical composition and material properties is required. In this work, we focus on the mechanical properties of quaternary sodium aluminoborosilicate glasses, wherein systematic changes in glass chemistry yield different resistances to indentation crack initiation. We discuss the origin of the composition dependence of indentation cracking based on an evaluation of the deformation mechanism taking place during the indentation event. To this end, we use a simple metric, the extent of indent side length recovery upon annealing, to quantify the extent of reversible volume deformation. Finally, we also compare the compositional trend in crack initiation resistance to that in crack growth resistance (fracture toughness), showing no simple correlation among the two.  相似文献   
10.
The strengths of four brittle materials―cordierite glass ceramic, fused silica, silicon, and polycrystalline alumina were measured after exposure to weakly corrosive water and moderately corrosive buffered HF (BHF) solution. Exposure to water did not alter the strengths in subsequent inert strength tests and decreased the strengths in reactive strength tests. Exposure to BHF increased the strengths in both tests, but only after an incubation exposure time. Prior to the incubation time, the BHF had the same effect as water, suggesting that the bond rupture kinetics were unaffected. Examination of strength‐controlling indentation flaws after the incubation time showed clear corrosive effects on the flaw geometry indicative of reductions in the indentation residual stress fields. The implication is that moderately corrosive environments increase the strength or lifetime of a brittle component by reducing the crack driving force via flaw alteration and do not, as perhaps expected, decrease the strength or lifetime through enhanced chemical reactivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号