首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50349篇
  免费   5522篇
  国内免费   3107篇
电工技术   981篇
技术理论   2篇
综合类   2837篇
化学工业   5131篇
金属工艺   7051篇
机械仪表   6430篇
建筑科学   665篇
矿业工程   604篇
能源动力   1269篇
轻工业   919篇
水利工程   491篇
石油天然气   812篇
武器工业   652篇
无线电   16599篇
一般工业技术   9905篇
冶金工业   1014篇
原子能技术   708篇
自动化技术   2908篇
  2024年   94篇
  2023年   1032篇
  2022年   1279篇
  2021年   1835篇
  2020年   1740篇
  2019年   1473篇
  2018年   1349篇
  2017年   1777篇
  2016年   1698篇
  2015年   1746篇
  2014年   2462篇
  2013年   3150篇
  2012年   3156篇
  2011年   3182篇
  2010年   2449篇
  2009年   2537篇
  2008年   2700篇
  2007年   3248篇
  2006年   3148篇
  2005年   2710篇
  2004年   2493篇
  2003年   2177篇
  2002年   1859篇
  2001年   1622篇
  2000年   1335篇
  1999年   1125篇
  1998年   930篇
  1997年   808篇
  1996年   768篇
  1995年   683篇
  1994年   589篇
  1993年   497篇
  1992年   371篇
  1991年   333篇
  1990年   226篇
  1989年   112篇
  1988年   81篇
  1987年   33篇
  1986年   40篇
  1985年   24篇
  1984年   26篇
  1983年   17篇
  1982年   11篇
  1981年   9篇
  1980年   10篇
  1979年   7篇
  1978年   5篇
  1975年   5篇
  1959年   4篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
海上风电作为可再生清洁能源之一,受到世界各国的高度重视与大力发展。我国将海上风电提升至解决能源危机、减缓气候变化、调整能源结构的国家战略高度,到2030年我国单位国内生产总值二氧化碳排放将比2005年下降65%以上,非化石能源占一次能源消费比重将达到25%左右。安装平台不足将是我国海上风电场无法如期建成投产的主要障碍。对自升自航式海上风电安装平台系列高端装备及其设计制造的三大技术难题——腿站立作业易“失稳”、大平台大跨距大倾覆力矩自升易“失控”、高空吊装巨型叶片逾百螺栓精准定位易“失准”,以及焊缝缺陷修复和局部裂纹损伤的激光锻造修复再制造进行了介绍,研制的具有不同规格的系列装备在中国、英国、丹麦、德国等国家的著名海上风电场建设应用情况良好。  相似文献   
2.
A new aqueous slurry-based laminated object manufacturing process for porous ceramics is proposed: firstly, an organic mesh sheet is pre-paved as a pore-forming template before slurry layer scraping; secondly, the 2D pattern is built with laser outline cutting of the dried mesh–ceramic composite layer; finally, the pore structure is formed after degreasing and sintering. Alumina parts with porosities of 51.5 %, round hole diameters of 80 ± 5 μm were fabricated using 70 wt. % solid content slurry and 100 mesh nylon net. Using an organic mesh as the framework and template not only reduces the risk of damage of the green body but also ensures the regularity, uniformity and connectivity of the micron scaled pore network. The layer-by-layer drying method avoids the delamination phenomenon and improves the paving density. The new method can realize the flexible design of the pore structure by using various organic mesh templates.  相似文献   
3.
《Ceramics International》2021,47(23):32969-32978
In this study, hydroxyapatite-based hydroxyapatite-wollastonite-boron nitride (HAp-Wo-BN) composite film was formed on the surface of Ti6Al4V by pulsed laser deposition (PLD). Based on a survey in scientific literature, it is presumed that this is the first time such a process is being undertaken. The wear and corrosion resistance of this film were analyzed comparatively in simulated body fluid (SBF) to simulate the human body environment. In the coating, HAp was used to form a bone-like layer, wollastonite was to enhance bone-tissue regeneration and BN was used for its bone-tissue healing and anti-bacterial properties. The results showed that the wear as well as the corrosion resistance of all samples after PLD treatment increased. Relatively the best wear resistance was achieved from boron nitride and wollastonite doped hydroxyapatite layers, where the best corrosion resistance was from the ones that consisted of only hydroxyapatite.  相似文献   
4.
In both developing and industrialized/developed countries, various hazardous/toxic environmental pollutants are entering water bodies from organic and inorganic compounds (heavy metals and specifically dyes). The global population is growing whereas the accessibility of clean, potable and safe drinking water is decreasing, leading to world deterioration in human health and limitation of agricultural and/or economic development. Treatment of water/wastewater (mainly industrial water) via catalytic reduction/degradation of environmental pollutants is extremely critical and is a major concern/issue for public health. Light and/or laser ablation induced photocatalytic processes have attracted much attention during recent years for water treatment due to their good (photo)catalytic efficiencies in the reduction/degradation of organic/inorganic pollutants. Pulsed laser ablation (PLA) is a rather novel catalyst fabrication approach for the generation of nanostructures with special morphologies (nanoparticles (NPs), nanocrystals, nanocomposites, nanowires, etc.) and different compositions (metals, alloys, oxides, core-shell, etc.). Laser ablation in liquid (LAL) is generally considered a quickly growing approach for the synthesis and modification of nanomaterials for practical applications in diverse fields. LAL-synthesized nanomaterials have been identified as attractive nanocatalysts or valuable photocatalysts in (photo)catalytic reduction/degradation reactions. In this review, the laser ablation/irradiation strategies based on LAL are systematically described and the applications of LAL synthesized metal/metal oxide nanocatalysts with highly controlled nanostructures in the degradation/reduction of organic/inorganic water pollutants are highlighted along with their degradation/reduction mechanisms.  相似文献   
5.
Diamond-like carbon (DLC) possesses brilliant and excellent properties, including excellent corrosion resistance as well as outstanding wear resistance. Ni and B co-doped DLC films were deposited on AZ91D magnesium alloy by electrodeposition under mild conditions (300 V and 25°C). Uniform and dense morphology of co-doped DLC films were observed, and Ni and B were uniformly incorporated into the carbon-based films. Among all the electrodeposits, the appearance of D and G peaks near 1330 and 1570 cm−1 revealed that the as-deposited films were typical DLC films. As the addition of Ni was increased to 0.05 g, the highest microindentation hardness, the lowest friction coefficient, and wear loss were achieved to be 164.5 HV, 0.3, and 0.6 × 10−5 kg/m, respectively. The amorphous carbon films fabricated at 0.05 g Ni had the lowest corrosion current density and the most positive corrosion potential, which was mainly due to the small and dense granular structure effectively hindering the penetration of corrosion media.  相似文献   
6.
Pulsed laser deposition (PLD) was used to prepare tungsten trioxide (WO3) films on ITO substrates with a varying laser power density of 4.0–5.5 W/cm2. XPS indicated that when the laser power density decreased, the peak positions of the W 4f and O 1s orbits shifted slightly to low energy due to the difference in oxygen vacancies. As the laser power density decreased, W6+ gradually replaced the lattice position of O2?, increasing oxygen vacancies in the lattice. The transmittance modulated values (ΔT) were over 44% at 830 nm, indicating strong absorption by the WO3 thin films in the near-infrared ray. The switching time of the WO3 thin films between bleached states and coloured states decreased as the laser power density increased due to the amorphous structure, morphology, and lower oxygen deficiency at a high power density. The high ΔT and very fast switching time of tb (1.09 s) and tc (6.01 s) demonstrated the excellent electrochromic (EC) properties of the WO3 films prepared by PLD.  相似文献   
7.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
8.
In this study, a kind of Ni-based superalloy specially designed for additive manufacturing (AM) was investigated. Thermo-Calc simulation and differential scanning calorimetry (DSC) analysis were used to determine phases and their transformation temperature. Experimental specimens were prepared by laser metal deposition (LMD) and traditional casting method. Microstructure, phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM), X-ray diffraction (XRD) and tensile tests. The results show that this alloy contains two basic phases, γ/γ', in addition to these phases, at least two secondary phases may be present, such as MC carbides and Laves phases. Furthermore, the as-deposited alloy has finer dendrite, its mean primary dendrite arm space (PDAS) is about 30-45 μm, and the average size of γ' particles is 100-150 nm. However, the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500 μm with secondary and even third dendrite arms. Correspondingly, the alloy displays different tensile behavior with different processing methods, and the as-deposited specimen shows better ultimate tensile stress (1,085.7±51.7 MPa), yield stress (697±19.5 MPa) and elongation (25.8%±2.2%) than that of the as-cast specimen. The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites, γ', and Laves phase, and the segregation of elements, etc. Such important information would be helpful for alloy application as well as new alloy development.  相似文献   
9.
Laser aided additive manufacturing(LAAM)was used to fabricate bulk Fe49.5Mn30Co10Cr10C0.5 interstitial multicomponent alloy using pre-alloyed powder.The room temperature yield strength(σy),ultimate tensile strength(σUTS)and elongation(εUST)were 645 MPa,917 MPa and 27.0%respectively.The as-built sample consisted of equiaxed and dendritic cellular structures formed by elemental segregation.These cellular structures together with oxide particle inclusions were deemed to strengthen the material.The other contributing components include dislocation strengthening,friction stress and grain bound-ary strengthening.The high εUTS was attributed to dislocation motion and activation of both twinning and transformation-induced plasticity(TWIP and TRIP).Tensile tests performed at-40℃and-130℃demonstrated superior tensile strength of 1041 MPa and 1267 MPa respectively.However,almost no twinning was observed in the fractured sample tested at-40℃and-130℃.Instead,higher fraction of strain-induced hexagonal close-packed(HCP)ε phase transformation of 21.2%were observed for fractured sample tested at-40℃,compared with 6.3%in fractured room temperature sample.  相似文献   
10.
The development of the Internet of things has prompted an exponential increase in the demand for flexible, wearable devices, thereby posing new challenges to their integration and conformalization. Additive manufacturing facilitates the fabrication of complex parts via a single integrated process. Herein, the development of a multinozzle, multimaterial printing device is reported. This device accommodates the various characteristics of printing materials, ensures high-capacity printing, and can accommodate a wide range of material viscosities from 0 to 1000 Cp. Complete capacitors, inclusive of the current collector, electrode, and electrolyte, can be printed without repeated clamping to complete the preheating, printing, and sintering processes. This method addresses the poor stability issue associated with printed electrode materials. Furthermore, after the intercalation of LiFePO4 with Na ions, X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the Na ions permeate the interlayer structure of LiFePO4, enhancing the ion migration channels by increasing the ion transmission rate. A current rate of 2.5 mAh ensures >2000 charge/discharge cycles, while retaining a charge/discharge efficiency of 96% and a discharge capacity of 91.3 mAh g−1. This manufacturing process can provide conformal power modules for a diverse range of portable devices with various shapes, improving space utilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号